Note: some texts in this report are based on the book Orchestrating Single-Cell Analysis with Bioconductor published under CC BY 4.0
1000 peripheral blood mononuclear cells by 10x Genomics
Just to review data from the preceding pipeline step
(01 - quality control
):
## class: SingleCellExperiment
## dim: 12202 1181
## metadata(1): Samples
## assays(1): counts
## rownames(12202): ENSG00000237491 ENSG00000225880 ... ENSG00000278817
## ENSG00000278384
## rowData names(5): Type ENSEMBL SYMBOL ENTREZID GENENAME
## colnames(1181): AAACCCAAGGAGAGTA-1 AAACGCTTCAGCCCAG-1 ...
## TTTGGTTGTAGAATAC-1 TTTGTTGCAATTAGGA-1
## colData names(14): Sample Barcode ... discard_qc discard_custom
## reducedDimNames(0):
## mainExpName: NULL
## altExpNames(0):
Assign each cell a score, based on its expression of G2/M and S phase markers. These marker sets should be anticorrelated in their expression levels, and cells expressing neither are likely not cycling and in G1 phase. In some cases, cell cycle can be the primary factor determining the cell heterogeneity and effectively masking the differences between cell subpopulations we want to study.
You can view the assigned cell cycle phases in the Dimensionality_reduction_plots section below.
Systematic differences in sequencing coverage between libraries are often observed in single-cell RNA sequencing data. They typically arise from technical differences in cDNA capture or PCR amplification efficiency across cells, attributable to the difficulty of achieving consistent library preparation with minimal starting material. Normalization aims to remove these differences such that they do not interfere with comparisons of the expression profiles between cells. This ensures that any observed heterogeneity or differential expression within the cell population are driven by biology and not technical biases.
More information in OSCA
Used normalization method: “scran”
scran
: normalization by
deconvolution
scuttle::computePooledFactors()
method, which implements
the deconvolution strategy for scaling normalization (A.
T. Lun, Bach, and Marioni 2016). This computes size factors
that are used to scale the counts in each cell. The assumption is that
most genes are not differentially expressed (DE) between cells, such
that any differences in expression across the majority of genes
represents some technical bias that should be removed.
We often use scRNA-seq data in exploratory analyses to characterize heterogeneity across cells. Procedures like clustering and dimensionality reduction compare cells based on their gene expression profiles, which involves aggregating per-gene differences into a single (dis)similarity metric between a pair of cells. The choice of genes to use in this calculation has a major impact on the behavior of the metric and the performance of downstream methods. We want to select genes that contain useful information about the biology of the system while removing genes that contain random noise. This aims to preserve interesting biological structure without the variance that obscures that structure, and to reduce the size of the data to improve computational efficiency of later steps.
More information in OSCA
HVG metric: “gene_var”
scran::modelGeneVar()
models the variance of the
log-expression profiles for each gene, decomposing it into technical and
biological components based on a fitted mean-variance trend.
Based on “gene_var”, HVGs were selected by: top 1000 HVGs.
Found 1000 HVGs.
Plot of HVGs:
The scran::doubletCluster()
function identifes clusters
with expression profiles lying between two other clusters. Considering
every possible triplet of clusters, the method uses the number of DE
genes, the median library size, and the proporion of cells in the
cluster to mark clusters as possible doublets.
Prior to normalization, quick clustering was performed. We can use those clusters to look at doublet score within them:
Discarded 0 cells (0 % of all cells) with doublet score above 3.5
As the name suggests, dimensionality reduction aims to reduce the number of separate dimensions in the data. See this chapter in OSCA that provides an intuitive explanation of the motivation behind, along with basic introduction to PCA, t-SNE and UMAP.
Principal components analysis (PCA) discovers axes in high-dimensional space that capture the largest amount of variation. In case of scRNA-seq, we basically compress multiple features into several dimensions. This reduces computational work in downstream analyses like clustering and other DR methods (UMAP and t-SNE), as calculations only need to be performed for a few dimensions rather than thousands of genes. It also reduces noise by averaging across multiple genes to obtain a more precise representation of the patterns in the data.
By definition, the top PCs capture the dominant factors of heterogeneity in the data set. In the context of scRNA-seq, our assumption is that biological processes affect multiple genes in a coordinated manner. This means that the earlier PCs are likely to represent biological structure as more variation can be captured by considering the correlated behavior of many genes. We use the earlier PCs in our downstream analyses, which concentrates the biological signal to simultaneously reduce computational work and remove noise.
There are several methods how to select the first PCs:
scran::denoisePCA()
, which takes the
estimates returned by scran::modelGeneVar()
.15 PCs were selected using the “forced” method
Graph-based clustering is commonly used for scRNA-seq, and often shows a good performance.
First, we used scran
to generate the shared nearest
neighbor (SNN) graph using 10 nearest neighbors (cells) and ‘rank’
weighting scheme. The graph was then subjected to community detection
using algorithms implemented in the igraph
package.
Leiden algorithm is an improved version of the Louvain algorithm that should prevent badly connected or even disconnected clusters.
It can be parametrized with different resolutions that determine how large communities are detected in the SNN graph. Generally, lower resolutions result in coarse-grained clusters, while higher ones in more fine-grained structures.
The relationships in cluster abundances under different resolutions
are visualized in the clustree
plot below. Stable clusters
across different resolutions can be quickly find as straight or little
branched vertical lines.
Louvain
algorithm is perhaps the most popular clustering method for
scRNA-seq, and was popularized by Seurat
.
It can be parametrized with different resolutions that determine how large communities are detected in the SNN graph. Generally, lower resolutions result in coarse-grained clusters, while higher ones in more fine-grained structures.
The relationships in cluster abundances under different resolutions
are visualized in the clustree
plot below. Stable clusters
across different resolutions can be quickly find as straight or little
branched vertical lines.
Walktrap algorithm uses random walks to find communities in the
graph, and it is the default
graph-based clustering method in scran
.
Walktrap algorithm is not using resolutions.
Single-Cell
Consensus Clustering (SC3
) is a tool for unsupervised
clustering of scRNA-seq data. SC3 achieves high accuracy and robustness
by consistently integrating different clustering solutions through a
consensus approach (it calculates clusters for selected numbers of
target clusters).
Cluster stability index shows how stable each cluster is
across the selected range of k
s. The stability index varies
between 0 and 1, where 1 means that the same cluster appears in every
solution for different k
.
PDF with cluster stability plots
The relationships in cluster abundances under different
k
s are visualized in the clustree
plot below.
Stable clusters across different k
s can be quickly find as
straight or little branched vertical lines.
K-means is a generic clustering algorithm that has been used in many
application areas. In R, it can be applied via the
stats::kmeans()
function. Typically, it is applied to a
reduced dimension representation of the expression data (most often PCA,
because of the interpretability of the low-dimensional distances). We
need to define the number of clusters in advance.
It is also possible to determine an optimal value of k
.
One way to measure the goodness of clustering is to calculate
within-cluster sum of squares \(W\)
(i.e. sum of distances between each data point and cluster center). The
optimal k
should have clusters with minimal \(W\). Here, we used a modified gap
statistic method described in OSCA.
The relationships in cluster abundances under different
k
s are visualized in the clustree
plot below.
Stable clusters across different k
s can be quickly find as
straight or little branched vertical lines.
We used the SingleR
package to predict cell types in the dataset. Given a reference dataset
of samples (single-cell or bulk) with known labels,
SinglerR
assigns those labels to new cells from a test
dataset based on similarities in their expression profiles. You can find
more information in the SingleR
book.
The used references are shown below in the tabs. Each have several diagnostic plots:
Microarray datasets derived from human primary cells (Mabbott et al. 2013). Most of the labels refer to blood subpopulations but cell types from other tissues are also available.
Score heatmaps PDF | Marker heatmaps PDF | Delta distribution PDF
This is the human immune reference that best covers all of the bases for a typical PBMC sample.
Score heatmaps PDF | Marker heatmaps PDF | Delta distribution PDF
## $PROJECT_NAME
## [1] "PBMC 1k"
##
## $PROJECT_DESCRIPTION
## [1] "1000 peripheral blood mononuclear cells by 10x Genomics"
##
## $INSTITUTE
## [1] "Example institute"
##
## $LABORATORY
## [1] "Example laboratory"
##
## $PEOPLE
## [1] "Example person 1, Example person 2"
##
## $ORGANISM
## [1] "human"
##
## $ANNOTATION_LIST
## $ANNOTATION_LIST$human
## [1] "org.Hs.eg.db"
##
## $ANNOTATION_LIST$mouse
## [1] "org.Mm.eg.db"
##
##
## $ENSEMBL_SPECIES
## [1] "Homo_sapiens"
##
## $CSS_FILE
## [1] "/home/rstudio/shared/scdrake_run_tests_20231202_01-1.5.1-bioc3.15-docker/pipeline_outputs/example_data/pbmc1k/Rmd/common/stylesheet.css"
##
## $BASE_OUT_DIR
## [1] "/home/rstudio/shared/scdrake_run_tests_20231202_01-1.5.1-bioc3.15-docker/pipeline_outputs/example_data/pbmc1k/output"
##
## $ANNOTATION_DB_FILE
## [1] "/usr/local/lib/R/site-library/org.Hs.eg.db/extdata/org.Hs.eg.sqlite"
##
## $ANNOTATION_PKG
## [1] "org.Hs.eg.db"
##
## attr(,"class")
## [1] "scdrake_list" "list"
## $NORMALIZATION_TYPE
## [1] "scran"
##
## $SCRAN_USE_QUICKCLUSTER
## [1] TRUE
##
## $SCRAN_QUICKCLUSTER_METHOD
## [1] "igraph"
##
## $SCT_VARS_TO_REGRESS
## NULL
##
## $SCT_N_HVG
## [1] 3000
##
## $HVG_METRIC
## [1] "gene_var"
##
## $HVG_SELECTION
## [1] "top"
##
## $HVG_SELECTION_VALUE
## [1] 1000
##
## $HVG_RM_CC_GENES
## [1] FALSE
##
## $HVG_CC_GENES_VAR_EXPL_THRESHOLD
## [1] 5
##
## $MAX_DOUBLET_SCORE
## [1] 3.5
##
## $PCA_SELECTION_METHOD
## [1] "forced"
##
## $PCA_FORCED_PCS
## [1] 15
##
## $TSNE_PERP
## [1] 20
##
## $TSNE_MAX_ITER
## [1] 1000
##
## $CLUSTER_GRAPH_SNN_K
## [1] 10
##
## $CLUSTER_GRAPH_SNN_TYPE
## [1] "rank"
##
## $CLUSTER_GRAPH_LEIDEN_ENABLED
## [1] TRUE
##
## $CLUSTER_GRAPH_LEIDEN_RESOLUTIONS
## [1] 0.4 0.8
##
## $CLUSTER_GRAPH_LOUVAIN_ENABLED
## [1] TRUE
##
## $CLUSTER_GRAPH_LOUVAIN_RESOLUTIONS
## [1] 0.4 0.8
##
## $CLUSTER_GRAPH_WALKTRAP_ENABLED
## [1] TRUE
##
## $CLUSTER_KMEANS_K_ENABLED
## [1] TRUE
##
## $CLUSTER_KMEANS_K
## [1] 3 4 5 6
##
## $CLUSTER_KMEANS_KBEST_ENABLED
## [1] TRUE
##
## $CLUSTER_SC3_ENABLED
## [1] TRUE
##
## $CLUSTER_SC3_K
## [1] 5 6
##
## $CLUSTER_SC3_N_CORES
## [1] 8
##
## $CELL_ANNOTATION_SOURCES
## $CELL_ANNOTATION_SOURCES$human_primary_cell_atlas_main
## $reference_type
## [1] "celldex"
##
## $reference
## [1] "HumanPrimaryCellAtlasData"
##
## $description
## [1] "Microarray datasets derived from human primary cells (Mabbott et al. 2013). Most of the labels refer to blood subpopulations but cell types from other tissues are also available.\n"
##
## $label_column
## [1] "label.main"
##
## $label_subsets
## [1] NA
##
## $train_params
## $genes
## [1] "de"
##
## $sd_thresh
## [1] 1
##
## $de_method
## [1] "wilcox"
##
## $de_n
## [1] 30
##
## $assay_type
## [1] "logcounts"
##
## attr(,"class")
## [1] "scdrake_list" "list"
##
## $name
## [1] "human_primary_cell_atlas_main"
##
## $classify_params
## $quantile
## [1] 0.8
##
## $tune_thresh
## [1] 0.05
##
## $assay_type
## [1] "logcounts"
##
## attr(,"class")
## [1] "scdrake_list" "list"
##
## $prune_score_params
## $n_mads
## [1] 3
##
## $min_diff_med
## [1] -Inf
##
## $min_diff_next
## [1] 0
##
## attr(,"class")
## [1] "scdrake_list" "list"
##
## $diagnostics_params
## $heatmap_n_top_markers
## [1] 20
##
## attr(,"class")
## [1] "scdrake_list" "list"
##
## attr(,"class")
## [1] "scdrake_list" "list"
##
## $CELL_ANNOTATION_SOURCES$monaco_immune_main
## $reference_type
## [1] "celldex"
##
## $reference
## [1] "MonacoImmuneData"
##
## $description
## [1] "This is the human immune reference that best covers all of the bases for a typical PBMC sample."
##
## $label_column
## [1] "label.main"
##
## $label_subsets
## [1] NA
##
## $train_params
## $genes
## [1] "sd"
##
## $sd_thresh
## [1] 1
##
## $de_method
## [1] "classic"
##
## $de_n
## NULL
##
## $assay_type
## [1] "logcounts"
##
## attr(,"class")
## [1] "scdrake_list" "list"
##
## $name
## [1] "monaco_immune_main"
##
## $classify_params
## $quantile
## [1] 0.8
##
## $tune_thresh
## [1] 0.05
##
## $assay_type
## [1] "logcounts"
##
## attr(,"class")
## [1] "scdrake_list" "list"
##
## $prune_score_params
## $n_mads
## [1] 3
##
## $min_diff_med
## [1] -Inf
##
## $min_diff_next
## [1] 0
##
## attr(,"class")
## [1] "scdrake_list" "list"
##
## $diagnostics_params
## $heatmap_n_top_markers
## [1] 20
##
## attr(,"class")
## [1] "scdrake_list" "list"
##
## attr(,"class")
## [1] "scdrake_list" "list"
##
##
## $CELL_ANNOTATION_SOURCES_DEFAULTS
## $CELL_ANNOTATION_SOURCES_DEFAULTS$TRAIN_PARAMS
## $CELL_ANNOTATION_SOURCES_DEFAULTS$TRAIN_PARAMS$GENES
## [1] "de"
##
## $CELL_ANNOTATION_SOURCES_DEFAULTS$TRAIN_PARAMS$SD_THRESH
## [1] 1
##
## $CELL_ANNOTATION_SOURCES_DEFAULTS$TRAIN_PARAMS$DE_METHOD
## [1] "classic"
##
## $CELL_ANNOTATION_SOURCES_DEFAULTS$TRAIN_PARAMS$DE_N
## NULL
##
## $CELL_ANNOTATION_SOURCES_DEFAULTS$TRAIN_PARAMS$ASSAY_TYPE
## [1] "logcounts"
##
##
## $CELL_ANNOTATION_SOURCES_DEFAULTS$CLASSIFY_PARAMS
## $CELL_ANNOTATION_SOURCES_DEFAULTS$CLASSIFY_PARAMS$QUANTILE
## [1] 0.8
##
## $CELL_ANNOTATION_SOURCES_DEFAULTS$CLASSIFY_PARAMS$TUNE_THRESH
## [1] 0.05
##
## $CELL_ANNOTATION_SOURCES_DEFAULTS$CLASSIFY_PARAMS$ASSAY_TYPE
## [1] "logcounts"
##
##
## $CELL_ANNOTATION_SOURCES_DEFAULTS$PRUNE_SCORE_PARAMS
## $CELL_ANNOTATION_SOURCES_DEFAULTS$PRUNE_SCORE_PARAMS$N_MADS
## [1] 3
##
## $CELL_ANNOTATION_SOURCES_DEFAULTS$PRUNE_SCORE_PARAMS$MIN_DIFF_MED
## [1] -Inf
##
## $CELL_ANNOTATION_SOURCES_DEFAULTS$PRUNE_SCORE_PARAMS$MIN_DIFF_NEXT
## [1] 0
##
##
## $CELL_ANNOTATION_SOURCES_DEFAULTS$DIAGNOSTICS_PARAMS
## $CELL_ANNOTATION_SOURCES_DEFAULTS$DIAGNOSTICS_PARAMS$HEATMAP_N_TOP_MARKERS
## [1] 20
##
##
##
## $ADDITIONAL_CELL_DATA_FILE
## [1] "additional_cell_data.Rds"
##
## $CELL_GROUPINGS
## $CELL_GROUPINGS$cluster_graph_louvain_r0.4_annotated
## $CELL_GROUPINGS$cluster_graph_louvain_r0.4_annotated$source_column
## [1] "cluster_graph_louvain_r0.4"
##
## $CELL_GROUPINGS$cluster_graph_louvain_r0.4_annotated$description
## [1] "Graph-based clustering (Louvain alg.), annotated clusters"
##
## $CELL_GROUPINGS$cluster_graph_louvain_r0.4_annotated$assignments
## $CELL_GROUPINGS$cluster_graph_louvain_r0.4_annotated$assignments$`1`
## [1] "memory_CD4+"
##
## $CELL_GROUPINGS$cluster_graph_louvain_r0.4_annotated$assignments$`2`
## [1] "B"
##
## $CELL_GROUPINGS$cluster_graph_louvain_r0.4_annotated$assignments$`3`
## [1] "memory_CD4+"
##
##
##
##
## $NORM_CLUSTERING_REPORT_DIMRED_NAMES
## [1] "umap" "pca" "tsne"
##
## $NORM_CLUSTERING_REPORT_DIMRED_PLOTS_OTHER
## $NORM_CLUSTERING_REPORT_DIMRED_PLOTS_OTHER$phase
## $NORM_CLUSTERING_REPORT_DIMRED_PLOTS_OTHER$phase$name
## [1] "phase"
##
## $NORM_CLUSTERING_REPORT_DIMRED_PLOTS_OTHER$phase$label
## [1] "Cell cycle phases"
##
##
## $NORM_CLUSTERING_REPORT_DIMRED_PLOTS_OTHER$doublet_score
## $NORM_CLUSTERING_REPORT_DIMRED_PLOTS_OTHER$doublet_score$name
## [1] "doublet_score"
##
## $NORM_CLUSTERING_REPORT_DIMRED_PLOTS_OTHER$doublet_score$label
## [1] "Doublet score"
##
##
## $NORM_CLUSTERING_REPORT_DIMRED_PLOTS_OTHER$total
## $NORM_CLUSTERING_REPORT_DIMRED_PLOTS_OTHER$total$name
## [1] "total"
##
## $NORM_CLUSTERING_REPORT_DIMRED_PLOTS_OTHER$total$label
## [1] "Total number of UMI"
##
##
## $NORM_CLUSTERING_REPORT_DIMRED_PLOTS_OTHER$detected
## $NORM_CLUSTERING_REPORT_DIMRED_PLOTS_OTHER$detected$name
## [1] "detected"
##
## $NORM_CLUSTERING_REPORT_DIMRED_PLOTS_OTHER$detected$label
## [1] "Detected number of genes"
##
##
## $NORM_CLUSTERING_REPORT_DIMRED_PLOTS_OTHER$cluster_graph_louvain_r0.4_annotated
## $NORM_CLUSTERING_REPORT_DIMRED_PLOTS_OTHER$cluster_graph_louvain_r0.4_annotated$name
## [1] "cluster_graph_louvain_r0.4_annotated"
##
## $NORM_CLUSTERING_REPORT_DIMRED_PLOTS_OTHER$cluster_graph_louvain_r0.4_annotated$label
## NULL
##
##
## $NORM_CLUSTERING_REPORT_DIMRED_PLOTS_OTHER$cluster_sc3_k6_custom
## $NORM_CLUSTERING_REPORT_DIMRED_PLOTS_OTHER$cluster_sc3_k6_custom$name
## [1] "cluster_sc3_k6_custom"
##
## $NORM_CLUSTERING_REPORT_DIMRED_PLOTS_OTHER$cluster_sc3_k6_custom$label
## [1] "From additional cell data"
##
##
##
## $SELECTED_MARKERS_FILE
## [1] "/home/rstudio/shared/scdrake_run_tests_20231202_01-1.5.1-bioc3.15-docker/pipeline_outputs/example_data/pbmc1k/selected_markers.csv"
##
## $NORM_CLUSTERING_REPORT_RMD_FILE
## [1] "/home/rstudio/shared/scdrake_run_tests_20231202_01-1.5.1-bioc3.15-docker/pipeline_outputs/example_data/pbmc1k/Rmd/single_sample/02_norm_clustering.Rmd"
##
## $NORM_CLUSTERING_REPORT_SIMPLE_RMD_FILE
## [1] "/home/rstudio/shared/scdrake_run_tests_20231202_01-1.5.1-bioc3.15-docker/pipeline_outputs/example_data/pbmc1k/Rmd/single_sample/02_norm_clustering_simple.Rmd"
##
## $NORM_CLUSTERING_BASE_OUT_DIR
## [1] "/home/rstudio/shared/scdrake_run_tests_20231202_01-1.5.1-bioc3.15-docker/pipeline_outputs/example_data/pbmc1k/output/02_norm_clustering"
##
## $NORM_CLUSTERING_SELECTED_MARKERS_OUT_DIR
## [1] "/home/rstudio/shared/scdrake_run_tests_20231202_01-1.5.1-bioc3.15-docker/pipeline_outputs/example_data/pbmc1k/output/02_norm_clustering/selected_markers"
##
## $NORM_CLUSTERING_DIMRED_PLOTS_OUT_DIR
## [1] "/home/rstudio/shared/scdrake_run_tests_20231202_01-1.5.1-bioc3.15-docker/pipeline_outputs/example_data/pbmc1k/output/02_norm_clustering/dimred_plots"
##
## $NORM_CLUSTERING_CELL_ANNOTATION_OUT_DIR
## [1] "/home/rstudio/shared/scdrake_run_tests_20231202_01-1.5.1-bioc3.15-docker/pipeline_outputs/example_data/pbmc1k/output/02_norm_clustering/cell_annotation"
##
## $NORM_CLUSTERING_OTHER_PLOTS_OUT_DIR
## [1] "/home/rstudio/shared/scdrake_run_tests_20231202_01-1.5.1-bioc3.15-docker/pipeline_outputs/example_data/pbmc1k/output/02_norm_clustering/other_plots"
##
## $NORM_CLUSTERING_REPORT_HTML_FILE
## [1] "/home/rstudio/shared/scdrake_run_tests_20231202_01-1.5.1-bioc3.15-docker/pipeline_outputs/example_data/pbmc1k/output/02_norm_clustering/02_norm_clustering.html"
##
## $NORM_CLUSTERING_REPORT_SIMPLE_HTML_FILE
## [1] "/home/rstudio/shared/scdrake_run_tests_20231202_01-1.5.1-bioc3.15-docker/pipeline_outputs/example_data/pbmc1k/output/02_norm_clustering/02_norm_clustering_simple.html"
##
## $NORM_CLUSTERING_KNITR_MESSAGE
## [1] FALSE
##
## $NORM_CLUSTERING_KNITR_WARNING
## [1] FALSE
##
## $NORM_CLUSTERING_KNITR_ECHO
## [1] FALSE
##
## attr(,"class")
## [1] "scdrake_list" "list"
drake
cache directory
/home/rstudio/shared/scdrake_run_tests_20231202_01-1.5.1-bioc3.15-docker/pipeline_outputs/example_data/pbmc1k/.drake
## No traceback available
3.15
## zlib
## "1.2.11"
## bzlib
## "1.0.8, 13-Jul-2019"
## xz
## "5.2.4"
## PCRE
## "10.34 2019-11-21"
## ICU
## "66.1"
## TRE
## "TRE 0.8.0 R_fixes (BSD)"
## iconv
## "glibc 2.31"
## readline
## "8.0"
## BLAS
## "/usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3"
## ─ Session info ───────────────────────────────────────────────────────────────
## setting value
## version R version 4.2.1 (2022-06-23)
## os Ubuntu 20.04.4 LTS
## system x86_64, linux-gnu
## ui X11
## language en
## collate C
## ctype en_US.UTF-8
## tz Etc/UTC
## date 2023-12-02
## pandoc 2.18 @ /usr/local/bin/ (via rmarkdown)
##
## ─ Packages ───────────────────────────────────────────────────────────────────
## ! package * version date (UTC) lib source
## abind 1.4-5 2016-07-21 [1] RSPM (R 4.2.0)
## AnnotationDbi * 1.58.0 2022-04-26 [1] Bioconductor
## AnnotationFilter * 1.20.0 2022-04-26 [1] Bioconductor
## AnnotationHub 3.4.0 2022-04-26 [1] Bioconductor
## argparser 0.7.1 2021-03-08 [1] RSPM (R 4.2.0)
## assertthat 0.2.1 2019-03-21 [1] CRAN (R 4.2.0)
## backports 1.4.1 2021-12-13 [1] RSPM (R 4.2.0)
## base64url 1.4 2018-05-14 [1] RSPM (R 4.2.0)
## batchelor 1.12.3 2022-06-23 [1] Bioconductor
## beachmat 2.12.0 2022-04-26 [1] Bioconductor
## beeswarm 0.4.0 2021-06-01 [1] RSPM (R 4.2.0)
## Biobase * 2.56.0 2022-04-26 [1] Bioconductor
## BiocFileCache 2.4.0 2022-04-26 [1] Bioconductor
## BiocGenerics * 0.42.0 2022-04-26 [1] Bioconductor
## BiocIO 1.6.0 2022-04-26 [1] Bioconductor
## BiocManager 1.30.19 2022-10-25 [1] RSPM (R 4.2.0)
## BiocNeighbors 1.14.0 2022-04-26 [1] Bioconductor
## BiocParallel 1.30.4 2022-10-11 [1] Bioconductor
## BiocSingular 1.12.0 2022-04-26 [1] Bioconductor
## BiocVersion 3.15.2 2022-03-29 [1] Bioconductor
## biomaRt 2.52.0 2022-04-26 [1] Bioconductor
## Biostrings 2.64.1 2022-08-18 [1] Bioconductor
## bit 4.0.5 2022-11-15 [1] RSPM (R 4.2.0)
## bit64 4.0.5 2020-08-30 [1] CRAN (R 4.2.0)
## bitops 1.0-7 2021-04-24 [1] CRAN (R 4.2.0)
## blob 1.2.3 2022-04-10 [1] CRAN (R 4.2.0)
## bluster 1.6.0 2022-04-26 [1] Bioconductor
## brio 1.1.3 2021-11-30 [1] CRAN (R 4.2.0)
## bslib 0.4.1 2022-11-02 [1] RSPM (R 4.2.0)
## cachem 1.0.6 2021-08-19 [1] CRAN (R 4.2.0)
## callr 3.7.3 2022-11-02 [1] RSPM (R 4.2.0)
## celldex 1.6.0 2022-04-28 [1] Bioconductor
## class 7.3-20 2022-01-16 [2] CRAN (R 4.2.1)
## cli * 3.4.1 2022-09-23 [1] RSPM (R 4.2.0)
## cluster 2.1.3 2022-03-28 [2] CRAN (R 4.2.1)
## clustermq 0.8.8 2019-06-05 [1] RSPM (R 4.2.1)
## clustree 0.5.0 2022-06-25 [1] RSPM (R 4.2.0)
## codetools 0.2-18 2020-11-04 [2] CRAN (R 4.2.1)
## colorspace 2.0-3 2022-02-21 [1] CRAN (R 4.2.0)
## conflicted * 1.1.0 2021-11-26 [1] RSPM (R 4.2.0)
## cowplot 1.1.1 2020-12-30 [1] RSPM (R 4.2.0)
## crayon 1.5.2 2022-09-29 [1] RSPM (R 4.2.0)
## crosstalk 1.2.0 2021-11-04 [1] CRAN (R 4.2.0)
## curl 4.3.3 2022-10-06 [1] RSPM (R 4.2.0)
## data.table 1.14.6 2022-11-16 [1] RSPM (R 4.2.0)
## DBI 1.1.3 2022-06-18 [1] RSPM (R 4.2.0)
## dbplyr 2.2.1 2022-06-27 [1] RSPM (R 4.2.0)
## DelayedArray * 0.22.0 2022-04-26 [1] Bioconductor
## DelayedMatrixStats 1.18.2 2022-10-13 [1] Bioconductor
## deldir 1.0-6 2021-10-23 [1] RSPM (R 4.2.0)
## DEoptimR 1.0-11 2022-04-03 [1] CRAN (R 4.2.0)
## desc 1.4.2 2022-09-08 [1] RSPM (R 4.2.0)
## devtools 2.4.4 2022-07-20 [1] RSPM (R 4.2.0)
## digest 0.6.30 2022-10-18 [1] RSPM (R 4.2.0)
## downlit 0.4.2 2022-07-05 [1] RSPM (R 4.2.0)
## dplyr 1.0.10 2022-09-01 [1] RSPM (R 4.2.0)
## dqrng 0.3.0 2021-05-01 [1] RSPM (R 4.2.0)
## drake * 7.13.4 2022-08-19 [1] RSPM (R 4.2.0)
## DropletUtils 1.16.0 2022-04-26 [1] Bioconductor
## DT 0.26 2022-10-19 [1] RSPM (R 4.2.0)
## e1071 1.7-12 2022-10-24 [1] RSPM (R 4.2.0)
## edgeR 3.38.4 2022-08-07 [1] Bioconductor
## ellipsis 0.3.2 2021-04-29 [1] CRAN (R 4.2.0)
## ensembldb * 2.20.2 2022-06-16 [1] Bioconductor
## evaluate 0.18 2022-11-07 [1] RSPM (R 4.2.0)
## ExperimentHub 2.4.0 2022-04-26 [1] Bioconductor
## fansi 1.0.3 2022-03-24 [1] CRAN (R 4.2.0)
## farver 2.1.1 2022-07-06 [1] RSPM (R 4.2.0)
## fastmap 1.1.0 2021-01-25 [1] CRAN (R 4.2.0)
## filelock 1.0.2 2018-10-05 [1] CRAN (R 4.2.0)
## fitdistrplus 1.1-8 2022-03-10 [1] RSPM (R 4.2.0)
## fs 1.5.2 2021-12-08 [1] CRAN (R 4.2.0)
## future 1.29.0 2022-11-06 [1] RSPM (R 4.2.0)
## future.apply 1.10.0 2022-11-05 [1] RSPM (R 4.2.0)
## generics 0.1.3 2022-07-05 [1] RSPM (R 4.2.0)
## GenomeInfoDb * 1.32.4 2022-09-06 [1] Bioconductor
## GenomeInfoDbData 1.2.8 2022-05-02 [1] Bioconductor
## GenomicAlignments 1.32.1 2022-07-24 [1] Bioconductor
## GenomicFeatures * 1.48.4 2022-09-20 [1] Bioconductor
## GenomicRanges * 1.48.0 2022-04-26 [1] Bioconductor
## ggbeeswarm 0.6.0 2017-08-07 [1] RSPM (R 4.2.0)
## ggforce 0.4.1 2022-10-04 [1] RSPM (R 4.2.0)
## ggplot2 3.4.0 2022-11-04 [1] RSPM (R 4.2.0)
## ggplotify 0.1.0 2021-09-02 [1] RSPM (R 4.2.0)
## ggraph 2.1.0 2022-10-09 [1] RSPM (R 4.2.0)
## ggrepel 0.9.2 2022-11-06 [1] RSPM (R 4.2.0)
## ggridges 0.5.4 2022-09-26 [1] RSPM (R 4.2.0)
## glmGamPoi 1.8.0 2022-04-26 [1] Bioconductor
## globals 0.16.2 2022-11-21 [1] RSPM (R 4.2.0)
## glue 1.6.2 2022-02-24 [1] CRAN (R 4.2.0)
## goftest 1.2-3 2021-10-07 [1] RSPM (R 4.2.0)
## graphlayouts 0.8.4 2022-11-24 [1] RSPM (R 4.2.0)
## gridExtra 2.3 2017-09-09 [1] CRAN (R 4.2.0)
## gridGraphics 0.5-1 2020-12-13 [1] RSPM (R 4.2.0)
## gtable 0.3.1 2022-09-01 [1] RSPM (R 4.2.0)
## harmony 0.1.1 2022-11-14 [1] RSPM (R 4.2.0)
## HDF5Array * 1.24.2 2022-08-02 [1] Bioconductor
## here * 1.0.1 2020-12-13 [1] RSPM (R 4.2.0)
## highr 0.9 2021-04-16 [1] CRAN (R 4.2.0)
## hms 1.1.2 2022-08-19 [1] RSPM (R 4.2.0)
## htmltools 0.5.3 2022-07-18 [1] RSPM (R 4.2.0)
## htmlwidgets 1.5.4 2021-09-08 [1] CRAN (R 4.2.0)
## httpuv 1.6.6 2022-09-08 [1] RSPM (R 4.2.0)
## httr 1.4.4 2022-08-17 [1] RSPM (R 4.2.0)
## ica 1.0-3 2022-07-08 [1] RSPM (R 4.2.0)
## igraph 1.3.5 2022-09-22 [1] RSPM (R 4.2.0)
## interactiveDisplayBase 1.34.0 2022-04-26 [1] Bioconductor
## IRanges * 2.30.1 2022-08-18 [1] Bioconductor
## irlba 2.3.5.1 2022-10-03 [1] RSPM (R 4.2.0)
## janitor 2.1.0 2021-01-05 [1] RSPM (R 4.2.0)
## jquerylib 0.1.4 2021-04-26 [1] CRAN (R 4.2.0)
## jsonlite 1.8.4 2022-12-06 [1] RSPM (R 4.2.0)
## kableExtra 1.3.4 2021-02-20 [1] RSPM (R 4.2.0)
## KEGGREST 1.36.3 2022-07-12 [1] Bioconductor
## KernSmooth 2.23-20 2021-05-03 [2] CRAN (R 4.2.1)
## knitr 1.41 2022-11-18 [1] RSPM (R 4.2.0)
## labeling 0.4.2 2020-10-20 [1] CRAN (R 4.2.0)
## later 1.3.0 2021-08-18 [1] CRAN (R 4.2.0)
## lattice 0.20-45 2021-09-22 [2] CRAN (R 4.2.1)
## lazyeval 0.2.2 2019-03-15 [1] CRAN (R 4.2.0)
## leiden 0.4.3 2022-09-10 [1] RSPM (R 4.2.0)
## lifecycle 1.0.3 2022-10-07 [1] RSPM (R 4.2.0)
## limma 3.52.4 2022-09-27 [1] Bioconductor
## listenv 0.8.0 2019-12-05 [1] RSPM (R 4.2.0)
## littler 0.3.17 2023-05-26 [1] Github (eddelbuettel/littler@31aa160)
## lmtest 0.9-40 2022-03-21 [1] RSPM (R 4.2.0)
## locfit 1.5-9.6 2022-07-11 [1] RSPM (R 4.2.0)
## lubridate 1.9.0 2022-11-06 [1] RSPM (R 4.2.0)
## magrittr * 2.0.3 2022-03-30 [1] CRAN (R 4.2.0)
## MASS 7.3-58.1 2022-08-03 [2] RSPM (R 4.2.0)
## Matrix * 1.5-3 2022-11-11 [1] RSPM (R 4.2.0)
## MatrixGenerics * 1.8.1 2022-06-26 [1] Bioconductor
## matrixStats * 0.63.0 2022-11-18 [1] RSPM (R 4.2.0)
## memoise 2.0.1 2021-11-26 [1] CRAN (R 4.2.0)
## metapod 1.4.0 2022-04-26 [1] Bioconductor
## mime 0.12 2021-09-28 [1] CRAN (R 4.2.0)
## miniUI 0.1.1.1 2018-05-18 [1] RSPM (R 4.2.0)
## munsell 0.5.0 2018-06-12 [1] CRAN (R 4.2.0)
## mvtnorm 1.1-3 2021-10-08 [1] CRAN (R 4.2.0)
## nlme 3.1-158 2022-06-15 [2] RSPM (R 4.2.0)
## org.Hs.eg.db 3.15.0 2022-04-11 [1] Bioconductor
## parallelly 1.32.1 2022-07-21 [1] RSPM (R 4.2.0)
## patchwork 1.1.2 2022-08-19 [1] RSPM (R 4.2.0)
## pbapply 1.6-0 2022-11-16 [1] RSPM (R 4.2.0)
## pcaPP 2.0-3 2022-10-24 [1] RSPM (R 4.2.0)
## PCAtools 2.8.0 2022-04-26 [1] Bioconductor
## pheatmap 1.0.12 2019-01-04 [1] RSPM (R 4.2.0)
## pillar 1.8.1 2022-08-19 [1] RSPM (R 4.2.0)
## pkgbuild 1.3.1 2021-12-20 [1] RSPM (R 4.2.0)
## pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.2.0)
## pkgload 1.3.2 2022-11-16 [1] RSPM (R 4.2.0)
## plotly 4.10.1 2022-11-07 [1] RSPM (R 4.2.0)
## plyr 1.8.8 2022-11-11 [1] RSPM (R 4.2.0)
## png 0.1-8 2022-11-29 [1] RSPM (R 4.2.0)
## polyclip 1.10-4 2022-10-20 [1] RSPM (R 4.2.0)
## prettyunits 1.1.1 2020-01-24 [1] CRAN (R 4.2.0)
## processx 3.8.0 2022-10-26 [1] RSPM (R 4.2.0)
## profvis 0.3.7 2020-11-02 [1] RSPM (R 4.2.0)
## progress 1.2.2 2019-05-16 [1] CRAN (R 4.2.0)
## progressr 0.11.0 2022-09-02 [1] RSPM (R 4.2.0)
## promises 1.2.0.1 2021-02-11 [1] CRAN (R 4.2.0)
## ProtGenerics 1.28.0 2022-04-26 [1] Bioconductor
## proxy 0.4-27 2022-06-09 [1] RSPM (R 4.2.0)
## ps 1.7.2 2022-10-26 [1] RSPM (R 4.2.0)
## purrr 0.3.5 2022-10-06 [1] RSPM (R 4.2.0)
## qs 0.25.4 2022-08-09 [1] RSPM (R 4.2.0)
## R.methodsS3 1.8.2 2022-06-13 [1] RSPM (R 4.2.0)
## R.oo 1.25.0 2022-06-12 [1] RSPM (R 4.2.0)
## R.utils 2.12.2 2022-11-11 [1] RSPM (R 4.2.0)
## R6 2.5.1 2021-08-19 [1] CRAN (R 4.2.0)
## ragg 1.2.4 2022-10-24 [1] RSPM (R 4.2.0)
## RANN 2.6.1 2019-01-08 [1] RSPM (R 4.2.0)
## RApiSerialize 0.1.2 2022-08-25 [1] RSPM (R 4.2.0)
## rappdirs 0.3.3 2021-01-31 [1] CRAN (R 4.2.0)
## RColorBrewer 1.1-3 2022-04-03 [1] CRAN (R 4.2.0)
## Rcpp 1.0.9 2022-07-08 [1] RSPM (R 4.2.0)
## RcppAnnoy 0.0.20 2022-10-27 [1] RSPM (R 4.2.0)
## RcppParallel 5.1.5 2022-01-05 [1] RSPM (R 4.2.0)
## RCurl 1.98-1.9 2022-10-03 [1] RSPM (R 4.2.0)
## readr 2.1.3 2022-10-01 [1] RSPM (R 4.2.0)
## remotes 2.4.2 2021-11-30 [1] RSPM (R 4.2.0)
## reshape2 1.4.4 2020-04-09 [1] CRAN (R 4.2.0)
## ResidualMatrix 1.6.1 2022-08-16 [1] Bioconductor
## restfulr 0.0.15 2022-06-16 [1] RSPM (R 4.2.0)
## reticulate 1.26 2022-08-31 [1] RSPM (R 4.2.0)
## rhdf5 * 2.40.0 2022-04-26 [1] Bioconductor
## rhdf5filters 1.8.0 2022-04-26 [1] Bioconductor
## Rhdf5lib 1.18.2 2022-05-15 [1] Bioconductor
## RhpcBLASctl 0.21-247.1 2021-11-05 [1] RSPM (R 4.2.0)
## rjson 0.2.21 2022-01-09 [1] CRAN (R 4.2.0)
## rlang * 1.0.6 2022-09-24 [1] RSPM (R 4.2.0)
## rmarkdown 2.18 2022-11-09 [1] RSPM (R 4.2.0)
## robustbase 0.95-0 2022-04-02 [1] CRAN (R 4.2.0)
## ROCR 1.0-11 2020-05-02 [1] CRAN (R 4.2.0)
## rprojroot 2.0.3 2022-04-02 [1] CRAN (R 4.2.0)
## rrcov 1.7-2 2022-10-24 [1] RSPM (R 4.2.0)
## Rsamtools 2.12.0 2022-04-26 [1] Bioconductor
## RSQLite 2.2.19 2022-11-24 [1] RSPM (R 4.2.0)
## rstudioapi 0.14 2022-08-22 [1] RSPM (R 4.2.0)
## rsvd 1.0.5 2021-04-16 [1] RSPM (R 4.2.0)
## rtracklayer 1.56.1 2022-06-23 [1] Bioconductor
## Rtsne 0.16 2022-04-17 [1] RSPM (R 4.2.0)
## rvest 1.0.3 2022-08-19 [1] RSPM (R 4.2.0)
## rzmq 0.9.8 2021-05-04 [1] RSPM (R 4.2.0)
## S4Vectors * 0.34.0 2022-04-26 [1] Bioconductor
## sass 0.4.4 2022-11-24 [1] RSPM (R 4.2.0)
## SC3 1.15.1 2023-05-26 [1] Github (gorgitko/SC3@58d73fb)
## ScaledMatrix 1.4.1 2022-09-11 [1] Bioconductor
## scales 1.2.1 2022-08-20 [1] RSPM (R 4.2.0)
## scater 1.24.0 2022-04-26 [1] Bioconductor
## scattermore 0.8 2022-02-14 [1] RSPM (R 4.2.0)
## scDblFinder 1.10.0 2022-04-26 [1] Bioconductor
## VP scdrake * 1.5.1 2023-06-15 [?] Bioconductor (on disk 1.5.0)
## scran 1.24.1 2022-09-11 [1] Bioconductor
## sctransform 0.3.5 2022-09-21 [1] RSPM (R 4.2.0)
## scuttle 1.6.3 2022-08-23 [1] Bioconductor
## sessioninfo 1.2.2 2021-12-06 [1] RSPM (R 4.2.0)
## Seurat 4.3.0 2022-11-18 [1] RSPM (R 4.2.0)
## SeuratObject 4.1.3 2022-11-07 [1] RSPM (R 4.2.0)
## shiny 1.7.3 2022-10-25 [1] RSPM (R 4.2.0)
## SingleCellExperiment 1.18.1 2022-10-02 [1] Bioconductor
## SingleR 1.10.0 2022-04-26 [1] Bioconductor
## snakecase 0.11.0 2019-05-25 [1] RSPM (R 4.2.0)
## sp 1.5-1 2022-11-07 [1] RSPM (R 4.2.0)
## sparseMatrixStats 1.8.0 2022-04-26 [1] Bioconductor
## spatstat.data 3.0-0 2022-10-21 [1] RSPM (R 4.2.0)
## spatstat.explore 3.0-5 2022-11-10 [1] RSPM (R 4.2.0)
## spatstat.geom 3.0-3 2022-10-25 [1] RSPM (R 4.2.0)
## spatstat.random 3.0-1 2022-11-03 [1] RSPM (R 4.2.0)
## spatstat.sparse 3.0-0 2022-10-21 [1] RSPM (R 4.2.0)
## spatstat.utils 3.0-1 2022-10-19 [1] RSPM (R 4.2.0)
## statmod 1.4.37 2022-08-12 [1] RSPM (R 4.2.0)
## storr 1.2.5 2020-12-01 [1] RSPM (R 4.2.0)
## stringfish 0.15.7 2022-04-13 [1] RSPM (R 4.2.0)
## stringi 1.7.8 2022-07-11 [1] RSPM (R 4.2.0)
## stringr 1.5.0 2022-12-02 [1] RSPM (R 4.2.0)
## SummarizedExperiment 1.26.1 2022-04-29 [1] Bioconductor
## survival 3.3-1 2022-03-03 [2] CRAN (R 4.2.1)
## svglite 2.1.0 2022-02-03 [1] RSPM (R 4.2.0)
## systemfonts 1.0.4 2022-02-11 [1] RSPM (R 4.2.0)
## tensor 1.5 2012-05-05 [1] RSPM (R 4.2.0)
## testthat * 3.1.5 2022-10-08 [1] RSPM (R 4.2.0)
## textshaping 0.3.6 2021-10-13 [1] RSPM (R 4.2.0)
## tibble 3.1.8 2022-07-22 [1] RSPM (R 4.2.0)
## tidygraph 1.2.3 2023-02-01 [1] RSPM (R 4.2.0)
## tidyr 1.2.1 2022-09-08 [1] RSPM (R 4.2.0)
## tidyselect 1.1.2 2022-02-21 [1] RSPM (R 4.2.0)
## timechange 0.1.1 2022-11-04 [1] RSPM (R 4.2.0)
## tweenr 2.0.2 2022-09-06 [1] RSPM (R 4.2.0)
## txtq 0.2.4 2021-03-27 [1] RSPM (R 4.2.0)
## tzdb 0.3.0 2022-03-28 [1] CRAN (R 4.2.0)
## urlchecker 1.0.1 2021-11-30 [1] RSPM (R 4.2.0)
## usethis 2.1.6 2022-05-25 [1] RSPM (R 4.2.0)
## utf8 1.2.2 2021-07-24 [1] CRAN (R 4.2.0)
## uwot 0.1.14 2022-08-22 [1] RSPM (R 4.2.0)
## vctrs 0.5.1 2022-11-16 [1] RSPM (R 4.2.0)
## vipor 0.4.5 2017-03-22 [1] RSPM (R 4.2.0)
## viridis 0.6.2 2021-10-13 [1] CRAN (R 4.2.0)
## viridisLite 0.4.1 2022-08-22 [1] RSPM (R 4.2.0)
## webshot 0.5.4 2022-09-26 [1] RSPM (R 4.2.0)
## withr 2.5.0 2022-03-03 [1] CRAN (R 4.2.0)
## WriteXLS 6.4.0 2022-02-24 [1] RSPM (R 4.2.0)
## xfun 0.35 2022-11-16 [1] RSPM (R 4.2.0)
## xgboost 1.6.0.1 2022-04-16 [1] RSPM (R 4.2.0)
## XML 3.99-0.13 2022-12-04 [1] RSPM (R 4.2.0)
## xml2 1.3.3 2021-11-30 [1] CRAN (R 4.2.0)
## xtable 1.8-4 2019-04-21 [1] CRAN (R 4.2.0)
## XVector 0.36.0 2022-04-26 [1] Bioconductor
## yaml 2.3.6 2022-10-18 [1] RSPM (R 4.2.0)
## yulab.utils 0.0.5 2022-06-30 [1] RSPM (R 4.2.0)
## zlibbioc 1.42.0 2022-04-26 [1] Bioconductor
## zoo 1.8-11 2022-09-17 [1] RSPM (R 4.2.0)
##
## [1] /usr/local/lib/R/site-library
## [2] /usr/local/lib/R/library
##
## V ── Loaded and on-disk version mismatch.
## P ── Loaded and on-disk path mismatch.
##
## ──────────────────────────────────────────────────────────────────────────────
## R version 4.2.1 (2022-06-23)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.4 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/liblapack.so.3
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats graphics stats4 utils methods base
##
## other attached packages:
## [1] ensembldb_2.20.2 AnnotationFilter_1.20.0 GenomicFeatures_1.48.4
## [4] GenomicRanges_1.48.0 GenomeInfoDb_1.32.4 HDF5Array_1.24.2
## [7] rhdf5_2.40.0 DelayedArray_0.22.0 MatrixGenerics_1.8.1
## [10] matrixStats_0.63.0 Matrix_1.5-3 drake_7.13.4
## [13] AnnotationDbi_1.58.0 IRanges_2.30.1 S4Vectors_0.34.0
## [16] Biobase_2.56.0 BiocGenerics_0.42.0 scdrake_1.5.1
## [19] testthat_3.1.5 magrittr_2.0.3 here_1.0.1
## [22] cli_3.4.1 rlang_1.0.6 conflicted_1.1.0
##
## loaded via a namespace (and not attached):
## [1] rsvd_1.0.5 ica_1.0-3
## [3] svglite_2.1.0 class_7.3-20
## [5] ps_1.7.2 Rsamtools_2.12.0
## [7] lmtest_0.9-40 rprojroot_2.0.3
## [9] crayon_1.5.2 MASS_7.3-58.1
## [11] rhdf5filters_1.8.0 nlme_3.1-158
## [13] WriteXLS_6.4.0 backports_1.4.1
## [15] XVector_0.36.0 ROCR_1.0-11
## [17] irlba_2.3.5.1 callr_3.7.3
## [19] limma_3.52.4 scater_1.24.0
## [21] filelock_1.0.2 stringfish_0.15.7
## [23] xgboost_1.6.0.1 qs_0.25.4
## [25] BiocParallel_1.30.4 rjson_0.2.21
## [27] bit64_4.0.5 glue_1.6.2
## [29] harmony_0.1.1 scDblFinder_1.10.0
## [31] pheatmap_1.0.12 sctransform_0.3.5
## [33] parallel_4.2.1 processx_3.8.0
## [35] vipor_0.4.5 spatstat.sparse_3.0-0
## [37] base64url_1.4 spatstat.geom_3.0-3
## [39] tidyselect_1.1.2 SummarizedExperiment_1.26.1
## [41] usethis_2.1.6 argparser_0.7.1
## [43] SeuratObject_4.1.3 fitdistrplus_1.1-8
## [45] XML_3.99-0.13 tidyr_1.2.1
## [47] zoo_1.8-11 GenomicAlignments_1.32.1
## [49] xtable_1.8-4 evaluate_0.18
## [51] ggplot2_3.4.0 scuttle_1.6.3
## [53] zlibbioc_1.42.0 rstudioapi_0.14
## [55] miniUI_0.1.1.1 sp_1.5-1
## [57] bslib_0.4.1 shiny_1.7.3
## [59] BiocSingular_1.12.0 xfun_0.35
## [61] pkgbuild_1.3.1 cluster_2.1.3
## [63] tidygraph_1.2.3 KEGGREST_1.36.3
## [65] clustermq_0.8.8 tibble_3.1.8
## [67] interactiveDisplayBase_1.34.0 ggrepel_0.9.2
## [69] listenv_0.8.0 Biostrings_2.64.1
## [71] png_0.1-8 future_1.29.0
## [73] withr_2.5.0 bitops_1.0-7
## [75] ggforce_0.4.1 plyr_1.8.8
## [77] pcaPP_2.0-3 e1071_1.7-12
## [79] dqrng_0.3.0 RcppParallel_5.1.5
## [81] pillar_1.8.1 cachem_1.0.6
## [83] fs_1.5.2 DelayedMatrixStats_1.18.2
## [85] vctrs_0.5.1 ellipsis_0.3.2
## [87] generics_0.1.3 RApiSerialize_0.1.2
## [89] devtools_2.4.4 tools_4.2.1
## [91] beeswarm_0.4.0 munsell_0.5.0
## [93] tweenr_2.0.2 proxy_0.4-27
## [95] fastmap_1.1.0 compiler_4.2.1
## [97] pkgload_1.3.2 abind_1.4-5
## [99] httpuv_1.6.6 rtracklayer_1.56.1
## [101] ExperimentHub_2.4.0 sessioninfo_1.2.2
## [103] plotly_4.10.1 GenomeInfoDbData_1.2.8
## [105] gridExtra_2.3 edgeR_3.38.4
## [107] lattice_0.20-45 deldir_1.0-6
## [109] utf8_1.2.2 later_1.3.0
## [111] dplyr_1.0.10 BiocFileCache_2.4.0
## [113] jsonlite_1.8.4 storr_1.2.5
## [115] scales_1.2.1 datasets_4.2.1
## [117] ScaledMatrix_1.4.1 pbapply_1.6-0
## [119] sparseMatrixStats_1.8.0 lazyeval_0.2.2
## [121] promises_1.2.0.1 R.utils_2.12.2
## [123] goftest_1.2-3 spatstat.utils_3.0-1
## [125] reticulate_1.26 rmarkdown_2.18
## [127] cowplot_1.1.1 textshaping_0.3.6
## [129] statmod_1.4.37 webshot_0.5.4
## [131] Rtsne_0.16 glmGamPoi_1.8.0
## [133] uwot_0.1.14 igraph_1.3.5
## [135] survival_3.3-1 ResidualMatrix_1.6.1
## [137] yaml_2.3.6 systemfonts_1.0.4
## [139] htmltools_0.5.3 memoise_2.0.1
## [141] profvis_0.3.7 BiocIO_1.6.0
## [143] Seurat_4.3.0 locfit_1.5-9.6
## [145] graphlayouts_0.8.4 PCAtools_2.8.0
## [147] viridisLite_0.4.1 digest_0.6.30
## [149] rrcov_1.7-2 assertthat_0.2.1
## [151] RhpcBLASctl_0.21-247.1 mime_0.12
## [153] rappdirs_0.3.3 SingleR_1.10.0
## [155] RSQLite_2.2.19 yulab.utils_0.0.5
## [157] future.apply_1.10.0 remotes_2.4.2
## [159] data.table_1.14.6 urlchecker_1.0.1
## [161] blob_1.2.3 R.oo_1.25.0
## [163] ragg_1.2.4 labeling_0.4.2
## [165] splines_4.2.1 Rhdf5lib_1.18.2
## [167] AnnotationHub_3.4.0 ProtGenerics_1.28.0
## [169] RCurl_1.98-1.9 hms_1.1.2
## [171] colorspace_2.0-3 DropletUtils_1.16.0
## [173] BiocManager_1.30.19 ggbeeswarm_0.6.0
## [175] littler_0.3.17 sass_0.4.4
## [177] Rcpp_1.0.9 RANN_2.6.1
## [179] mvtnorm_1.1-3 txtq_0.2.4
## [181] fansi_1.0.3 tzdb_0.3.0
## [183] brio_1.1.3 parallelly_1.32.1
## [185] R6_2.5.1 grid_4.2.1
## [187] ggridges_0.5.4 lifecycle_1.0.3
## [189] bluster_1.6.0 curl_4.3.3
## [191] jquerylib_0.1.4 leiden_0.4.3
## [193] snakecase_0.11.0 robustbase_0.95-0
## [195] desc_1.4.2 RcppAnnoy_0.0.20
## [197] org.Hs.eg.db_3.15.0 RColorBrewer_1.1-3
## [199] spatstat.explore_3.0-5 stringr_1.5.0
## [201] htmlwidgets_1.5.4 beachmat_2.12.0
## [203] polyclip_1.10-4 biomaRt_2.52.0
## [205] purrr_0.3.5 crosstalk_1.2.0
## [207] timechange_0.1.1 gridGraphics_0.5-1
## [209] rvest_1.0.3 globals_0.16.2
## [211] spatstat.random_3.0-1 patchwork_1.1.2
## [213] progressr_0.11.0 batchelor_1.12.3
## [215] codetools_0.2-18 grDevices_4.2.1
## [217] lubridate_1.9.0 metapod_1.4.0
## [219] prettyunits_1.1.1 SingleCellExperiment_1.18.1
## [221] dbplyr_2.2.1 R.methodsS3_1.8.2
## [223] celldex_1.6.0 gtable_0.3.1
## [225] DBI_1.1.3 highr_0.9
## [227] tensor_1.5 httr_1.4.4
## [229] KernSmooth_2.23-20 stringi_1.7.8
## [231] progress_1.2.2 reshape2_1.4.4
## [233] farver_2.1.1 viridis_0.6.2
## [235] DT_0.26 xml2_1.3.3
## [237] BiocNeighbors_1.14.0 kableExtra_1.3.4
## [239] restfulr_0.0.15 readr_2.1.3
## [241] ggplotify_0.1.0 scattermore_0.8
## [243] BiocVersion_3.15.2 scran_1.24.1
## [245] DEoptimR_1.0-11 bit_4.0.5
## [247] clustree_0.5.0 spatstat.data_3.0-0
## [249] ggraph_2.1.0 janitor_2.1.0
## [251] pkgconfig_2.0.3 rzmq_0.9.8
## [253] knitr_1.41 downlit_0.4.2
## [255] SC3_1.15.1
Page generated on 2023-12-02 18:51:33