Note: some texts in this report are based on the book Orchestrating Single-Cell Analysis with Bioconductor published under CC BY 4.0
1000 peripheral blood mononuclear cells by 10x Genomics
This is a simplified report without technical details. For the full report see 02_norm_clustering.html
Graph-based clustering is commonly used for scRNA-seq, and often shows a good performance.
First, we used scran
to generate the shared nearest
neighbor (SNN) graph using 10 nearest neighbors (cells) and ‘rank’
weighting scheme. The graph was then subjected to community detection
using algorithms implemented in the igraph
package.
Leiden algorithm is an improved version of the Louvain algorithm that should prevent badly connected or even disconnected clusters.
It can be parametrized with different resolutions that determine how large communities are detected in the SNN graph. Generally, lower resolutions result in coarse-grained clusters, while higher ones in more fine-grained structures.
The relationships in cluster abundances under different resolutions
are visualized in the clustree
plot below. Stable clusters
across different resolutions can be quickly find as straight or little
branched vertical lines.
Louvain
algorithm is perhaps the most popular clustering method for
scRNA-seq, and was popularized by Seurat
.
It can be parametrized with different resolutions that determine how large communities are detected in the SNN graph. Generally, lower resolutions result in coarse-grained clusters, while higher ones in more fine-grained structures.
The relationships in cluster abundances under different resolutions
are visualized in the clustree
plot below. Stable clusters
across different resolutions can be quickly find as straight or little
branched vertical lines.
Walktrap algorithm uses random walks to find communities in the
graph, and it is the default
graph-based clustering method in scran
.
Walktrap algorithm is not using resolutions.
Single-Cell
Consensus Clustering (SC3
) is a tool for unsupervised
clustering of scRNA-seq data. SC3 achieves high accuracy and robustness
by consistently integrating different clustering solutions through a
consensus approach (it calculates clusters for selected numbers of
target clusters).
Cluster stability index shows how stable each cluster is
across the selected range of k
s. The stability index varies
between 0 and 1, where 1 means that the same cluster appears in every
solution for different k
.
PDF with cluster stability plots
The relationships in cluster abundances under different
k
s are visualized in the clustree
plot below.
Stable clusters across different k
s can be quickly find as
straight or little branched vertical lines.
K-means is a generic clustering algorithm that has been used in many
application areas. In R, it can be applied via the
stats::kmeans()
function. Typically, it is applied to a
reduced dimension representation of the expression data (most often PCA,
because of the interpretability of the low-dimensional distances). We
need to define the number of clusters in advance.
It is also possible to determine an optimal value of k
.
One way to measure the goodness of clustering is to calculate
within-cluster sum of squares \(W\)
(i.e. sum of distances between each data point and cluster center). The
optimal k
should have clusters with minimal \(W\). Here, we used a modified gap
statistic method described in OSCA.
The relationships in cluster abundances under different
k
s are visualized in the clustree
plot below.
Stable clusters across different k
s can be quickly find as
straight or little branched vertical lines.
We used the SingleR
package to predict cell types in the dataset. Given a reference dataset
of samples (single-cell or bulk) with known labels,
SinglerR
assigns those labels to new cells from a test
dataset based on similarities in their expression profiles. You can find
more information in the SingleR
book.
The used references are shown below in the tabs. Each have several diagnostic plots:
Microarray datasets derived from human primary cells (Mabbott et al. 2013). Most of the labels refer to blood subpopulations but cell types from other tissues are also available.
Score heatmaps PDF | Marker heatmaps PDF | Delta distribution PDF
This is the human immune reference that best covers all of the bases for a typical PBMC sample.
Score heatmaps PDF | Marker heatmaps PDF | Delta distribution PDF
## $PROJECT_NAME
## [1] "PBMC 1k"
##
## $PROJECT_DESCRIPTION
## [1] "1000 peripheral blood mononuclear cells by 10x Genomics"
##
## $INSTITUTE
## [1] "Example institute"
##
## $LABORATORY
## [1] "Example laboratory"
##
## $PEOPLE
## [1] "Example person 1, Example person 2"
##
## $ORGANISM
## [1] "human"
##
## $ANNOTATION_LIST
## $ANNOTATION_LIST$human
## [1] "org.Hs.eg.db"
##
## $ANNOTATION_LIST$mouse
## [1] "org.Mm.eg.db"
##
##
## $ENSEMBL_SPECIES
## [1] "Homo_sapiens"
##
## $CSS_FILE
## [1] "/home/rstudio/shared/scdrake_run_tests_20231202_01-1.5.1-bioc3.15-docker/pipeline_outputs/example_data/pbmc1k/Rmd/common/stylesheet.css"
##
## $BASE_OUT_DIR
## [1] "/home/rstudio/shared/scdrake_run_tests_20231202_01-1.5.1-bioc3.15-docker/pipeline_outputs/example_data/pbmc1k/output"
##
## $ANNOTATION_DB_FILE
## [1] "/usr/local/lib/R/site-library/org.Hs.eg.db/extdata/org.Hs.eg.sqlite"
##
## $ANNOTATION_PKG
## [1] "org.Hs.eg.db"
##
## attr(,"class")
## [1] "scdrake_list" "list"
## $NORMALIZATION_TYPE
## [1] "scran"
##
## $SCRAN_USE_QUICKCLUSTER
## [1] TRUE
##
## $SCRAN_QUICKCLUSTER_METHOD
## [1] "igraph"
##
## $SCT_VARS_TO_REGRESS
## NULL
##
## $SCT_N_HVG
## [1] 3000
##
## $HVG_METRIC
## [1] "gene_var"
##
## $HVG_SELECTION
## [1] "top"
##
## $HVG_SELECTION_VALUE
## [1] 1000
##
## $HVG_RM_CC_GENES
## [1] FALSE
##
## $HVG_CC_GENES_VAR_EXPL_THRESHOLD
## [1] 5
##
## $MAX_DOUBLET_SCORE
## [1] 3.5
##
## $PCA_SELECTION_METHOD
## [1] "forced"
##
## $PCA_FORCED_PCS
## [1] 15
##
## $TSNE_PERP
## [1] 20
##
## $TSNE_MAX_ITER
## [1] 1000
##
## $CLUSTER_GRAPH_SNN_K
## [1] 10
##
## $CLUSTER_GRAPH_SNN_TYPE
## [1] "rank"
##
## $CLUSTER_GRAPH_LEIDEN_ENABLED
## [1] TRUE
##
## $CLUSTER_GRAPH_LEIDEN_RESOLUTIONS
## [1] 0.4 0.8
##
## $CLUSTER_GRAPH_LOUVAIN_ENABLED
## [1] TRUE
##
## $CLUSTER_GRAPH_LOUVAIN_RESOLUTIONS
## [1] 0.4 0.8
##
## $CLUSTER_GRAPH_WALKTRAP_ENABLED
## [1] TRUE
##
## $CLUSTER_KMEANS_K_ENABLED
## [1] TRUE
##
## $CLUSTER_KMEANS_K
## [1] 3 4 5 6
##
## $CLUSTER_KMEANS_KBEST_ENABLED
## [1] TRUE
##
## $CLUSTER_SC3_ENABLED
## [1] TRUE
##
## $CLUSTER_SC3_K
## [1] 5 6
##
## $CLUSTER_SC3_N_CORES
## [1] 8
##
## $CELL_ANNOTATION_SOURCES
## $CELL_ANNOTATION_SOURCES$human_primary_cell_atlas_main
## $reference_type
## [1] "celldex"
##
## $reference
## [1] "HumanPrimaryCellAtlasData"
##
## $description
## [1] "Microarray datasets derived from human primary cells (Mabbott et al. 2013). Most of the labels refer to blood subpopulations but cell types from other tissues are also available.\n"
##
## $label_column
## [1] "label.main"
##
## $label_subsets
## [1] NA
##
## $train_params
## $genes
## [1] "de"
##
## $sd_thresh
## [1] 1
##
## $de_method
## [1] "wilcox"
##
## $de_n
## [1] 30
##
## $assay_type
## [1] "logcounts"
##
## attr(,"class")
## [1] "scdrake_list" "list"
##
## $name
## [1] "human_primary_cell_atlas_main"
##
## $classify_params
## $quantile
## [1] 0.8
##
## $tune_thresh
## [1] 0.05
##
## $assay_type
## [1] "logcounts"
##
## attr(,"class")
## [1] "scdrake_list" "list"
##
## $prune_score_params
## $n_mads
## [1] 3
##
## $min_diff_med
## [1] -Inf
##
## $min_diff_next
## [1] 0
##
## attr(,"class")
## [1] "scdrake_list" "list"
##
## $diagnostics_params
## $heatmap_n_top_markers
## [1] 20
##
## attr(,"class")
## [1] "scdrake_list" "list"
##
## attr(,"class")
## [1] "scdrake_list" "list"
##
## $CELL_ANNOTATION_SOURCES$monaco_immune_main
## $reference_type
## [1] "celldex"
##
## $reference
## [1] "MonacoImmuneData"
##
## $description
## [1] "This is the human immune reference that best covers all of the bases for a typical PBMC sample."
##
## $label_column
## [1] "label.main"
##
## $label_subsets
## [1] NA
##
## $train_params
## $genes
## [1] "sd"
##
## $sd_thresh
## [1] 1
##
## $de_method
## [1] "classic"
##
## $de_n
## NULL
##
## $assay_type
## [1] "logcounts"
##
## attr(,"class")
## [1] "scdrake_list" "list"
##
## $name
## [1] "monaco_immune_main"
##
## $classify_params
## $quantile
## [1] 0.8
##
## $tune_thresh
## [1] 0.05
##
## $assay_type
## [1] "logcounts"
##
## attr(,"class")
## [1] "scdrake_list" "list"
##
## $prune_score_params
## $n_mads
## [1] 3
##
## $min_diff_med
## [1] -Inf
##
## $min_diff_next
## [1] 0
##
## attr(,"class")
## [1] "scdrake_list" "list"
##
## $diagnostics_params
## $heatmap_n_top_markers
## [1] 20
##
## attr(,"class")
## [1] "scdrake_list" "list"
##
## attr(,"class")
## [1] "scdrake_list" "list"
##
##
## $CELL_ANNOTATION_SOURCES_DEFAULTS
## $CELL_ANNOTATION_SOURCES_DEFAULTS$TRAIN_PARAMS
## $CELL_ANNOTATION_SOURCES_DEFAULTS$TRAIN_PARAMS$GENES
## [1] "de"
##
## $CELL_ANNOTATION_SOURCES_DEFAULTS$TRAIN_PARAMS$SD_THRESH
## [1] 1
##
## $CELL_ANNOTATION_SOURCES_DEFAULTS$TRAIN_PARAMS$DE_METHOD
## [1] "classic"
##
## $CELL_ANNOTATION_SOURCES_DEFAULTS$TRAIN_PARAMS$DE_N
## NULL
##
## $CELL_ANNOTATION_SOURCES_DEFAULTS$TRAIN_PARAMS$ASSAY_TYPE
## [1] "logcounts"
##
##
## $CELL_ANNOTATION_SOURCES_DEFAULTS$CLASSIFY_PARAMS
## $CELL_ANNOTATION_SOURCES_DEFAULTS$CLASSIFY_PARAMS$QUANTILE
## [1] 0.8
##
## $CELL_ANNOTATION_SOURCES_DEFAULTS$CLASSIFY_PARAMS$TUNE_THRESH
## [1] 0.05
##
## $CELL_ANNOTATION_SOURCES_DEFAULTS$CLASSIFY_PARAMS$ASSAY_TYPE
## [1] "logcounts"
##
##
## $CELL_ANNOTATION_SOURCES_DEFAULTS$PRUNE_SCORE_PARAMS
## $CELL_ANNOTATION_SOURCES_DEFAULTS$PRUNE_SCORE_PARAMS$N_MADS
## [1] 3
##
## $CELL_ANNOTATION_SOURCES_DEFAULTS$PRUNE_SCORE_PARAMS$MIN_DIFF_MED
## [1] -Inf
##
## $CELL_ANNOTATION_SOURCES_DEFAULTS$PRUNE_SCORE_PARAMS$MIN_DIFF_NEXT
## [1] 0
##
##
## $CELL_ANNOTATION_SOURCES_DEFAULTS$DIAGNOSTICS_PARAMS
## $CELL_ANNOTATION_SOURCES_DEFAULTS$DIAGNOSTICS_PARAMS$HEATMAP_N_TOP_MARKERS
## [1] 20
##
##
##
## $ADDITIONAL_CELL_DATA_FILE
## [1] "additional_cell_data.Rds"
##
## $CELL_GROUPINGS
## $CELL_GROUPINGS$cluster_graph_louvain_r0.4_annotated
## $CELL_GROUPINGS$cluster_graph_louvain_r0.4_annotated$source_column
## [1] "cluster_graph_louvain_r0.4"
##
## $CELL_GROUPINGS$cluster_graph_louvain_r0.4_annotated$description
## [1] "Graph-based clustering (Louvain alg.), annotated clusters"
##
## $CELL_GROUPINGS$cluster_graph_louvain_r0.4_annotated$assignments
## $CELL_GROUPINGS$cluster_graph_louvain_r0.4_annotated$assignments$`1`
## [1] "memory_CD4+"
##
## $CELL_GROUPINGS$cluster_graph_louvain_r0.4_annotated$assignments$`2`
## [1] "B"
##
## $CELL_GROUPINGS$cluster_graph_louvain_r0.4_annotated$assignments$`3`
## [1] "memory_CD4+"
##
##
##
##
## $NORM_CLUSTERING_REPORT_DIMRED_NAMES
## [1] "umap" "pca" "tsne"
##
## $NORM_CLUSTERING_REPORT_DIMRED_PLOTS_OTHER
## $NORM_CLUSTERING_REPORT_DIMRED_PLOTS_OTHER$phase
## $NORM_CLUSTERING_REPORT_DIMRED_PLOTS_OTHER$phase$name
## [1] "phase"
##
## $NORM_CLUSTERING_REPORT_DIMRED_PLOTS_OTHER$phase$label
## [1] "Cell cycle phases"
##
##
## $NORM_CLUSTERING_REPORT_DIMRED_PLOTS_OTHER$doublet_score
## $NORM_CLUSTERING_REPORT_DIMRED_PLOTS_OTHER$doublet_score$name
## [1] "doublet_score"
##
## $NORM_CLUSTERING_REPORT_DIMRED_PLOTS_OTHER$doublet_score$label
## [1] "Doublet score"
##
##
## $NORM_CLUSTERING_REPORT_DIMRED_PLOTS_OTHER$total
## $NORM_CLUSTERING_REPORT_DIMRED_PLOTS_OTHER$total$name
## [1] "total"
##
## $NORM_CLUSTERING_REPORT_DIMRED_PLOTS_OTHER$total$label
## [1] "Total number of UMI"
##
##
## $NORM_CLUSTERING_REPORT_DIMRED_PLOTS_OTHER$detected
## $NORM_CLUSTERING_REPORT_DIMRED_PLOTS_OTHER$detected$name
## [1] "detected"
##
## $NORM_CLUSTERING_REPORT_DIMRED_PLOTS_OTHER$detected$label
## [1] "Detected number of genes"
##
##
## $NORM_CLUSTERING_REPORT_DIMRED_PLOTS_OTHER$cluster_graph_louvain_r0.4_annotated
## $NORM_CLUSTERING_REPORT_DIMRED_PLOTS_OTHER$cluster_graph_louvain_r0.4_annotated$name
## [1] "cluster_graph_louvain_r0.4_annotated"
##
## $NORM_CLUSTERING_REPORT_DIMRED_PLOTS_OTHER$cluster_graph_louvain_r0.4_annotated$label
## NULL
##
##
## $NORM_CLUSTERING_REPORT_DIMRED_PLOTS_OTHER$cluster_sc3_k6_custom
## $NORM_CLUSTERING_REPORT_DIMRED_PLOTS_OTHER$cluster_sc3_k6_custom$name
## [1] "cluster_sc3_k6_custom"
##
## $NORM_CLUSTERING_REPORT_DIMRED_PLOTS_OTHER$cluster_sc3_k6_custom$label
## [1] "From additional cell data"
##
##
##
## $SELECTED_MARKERS_FILE
## [1] "/home/rstudio/shared/scdrake_run_tests_20231202_01-1.5.1-bioc3.15-docker/pipeline_outputs/example_data/pbmc1k/selected_markers.csv"
##
## $NORM_CLUSTERING_REPORT_RMD_FILE
## [1] "/home/rstudio/shared/scdrake_run_tests_20231202_01-1.5.1-bioc3.15-docker/pipeline_outputs/example_data/pbmc1k/Rmd/single_sample/02_norm_clustering.Rmd"
##
## $NORM_CLUSTERING_REPORT_SIMPLE_RMD_FILE
## [1] "/home/rstudio/shared/scdrake_run_tests_20231202_01-1.5.1-bioc3.15-docker/pipeline_outputs/example_data/pbmc1k/Rmd/single_sample/02_norm_clustering_simple.Rmd"
##
## $NORM_CLUSTERING_BASE_OUT_DIR
## [1] "/home/rstudio/shared/scdrake_run_tests_20231202_01-1.5.1-bioc3.15-docker/pipeline_outputs/example_data/pbmc1k/output/02_norm_clustering"
##
## $NORM_CLUSTERING_SELECTED_MARKERS_OUT_DIR
## [1] "/home/rstudio/shared/scdrake_run_tests_20231202_01-1.5.1-bioc3.15-docker/pipeline_outputs/example_data/pbmc1k/output/02_norm_clustering/selected_markers"
##
## $NORM_CLUSTERING_DIMRED_PLOTS_OUT_DIR
## [1] "/home/rstudio/shared/scdrake_run_tests_20231202_01-1.5.1-bioc3.15-docker/pipeline_outputs/example_data/pbmc1k/output/02_norm_clustering/dimred_plots"
##
## $NORM_CLUSTERING_CELL_ANNOTATION_OUT_DIR
## [1] "/home/rstudio/shared/scdrake_run_tests_20231202_01-1.5.1-bioc3.15-docker/pipeline_outputs/example_data/pbmc1k/output/02_norm_clustering/cell_annotation"
##
## $NORM_CLUSTERING_OTHER_PLOTS_OUT_DIR
## [1] "/home/rstudio/shared/scdrake_run_tests_20231202_01-1.5.1-bioc3.15-docker/pipeline_outputs/example_data/pbmc1k/output/02_norm_clustering/other_plots"
##
## $NORM_CLUSTERING_REPORT_HTML_FILE
## [1] "/home/rstudio/shared/scdrake_run_tests_20231202_01-1.5.1-bioc3.15-docker/pipeline_outputs/example_data/pbmc1k/output/02_norm_clustering/02_norm_clustering.html"
##
## $NORM_CLUSTERING_REPORT_SIMPLE_HTML_FILE
## [1] "/home/rstudio/shared/scdrake_run_tests_20231202_01-1.5.1-bioc3.15-docker/pipeline_outputs/example_data/pbmc1k/output/02_norm_clustering/02_norm_clustering_simple.html"
##
## $NORM_CLUSTERING_KNITR_MESSAGE
## [1] FALSE
##
## $NORM_CLUSTERING_KNITR_WARNING
## [1] FALSE
##
## $NORM_CLUSTERING_KNITR_ECHO
## [1] FALSE
##
## attr(,"class")
## [1] "scdrake_list" "list"
drake
cache directory
/home/rstudio/shared/scdrake_run_tests_20231202_01-1.5.1-bioc3.15-docker/pipeline_outputs/example_data/pbmc1k/.drake
## No traceback available
3.15
## zlib
## "1.2.11"
## bzlib
## "1.0.8, 13-Jul-2019"
## xz
## "5.2.4"
## PCRE
## "10.34 2019-11-21"
## ICU
## "66.1"
## TRE
## "TRE 0.8.0 R_fixes (BSD)"
## iconv
## "glibc 2.31"
## readline
## "8.0"
## BLAS
## "/usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3"
## ─ Session info ───────────────────────────────────────────────────────────────
## setting value
## version R version 4.2.1 (2022-06-23)
## os Ubuntu 20.04.4 LTS
## system x86_64, linux-gnu
## ui X11
## language en
## collate C
## ctype en_US.UTF-8
## tz Etc/UTC
## date 2023-12-02
## pandoc 2.18 @ /usr/local/bin/ (via rmarkdown)
##
## ─ Packages ───────────────────────────────────────────────────────────────────
## ! package * version date (UTC) lib source
## abind 1.4-5 2016-07-21 [1] RSPM (R 4.2.0)
## AnnotationDbi * 1.58.0 2022-04-26 [1] Bioconductor
## AnnotationFilter * 1.20.0 2022-04-26 [1] Bioconductor
## AnnotationHub 3.4.0 2022-04-26 [1] Bioconductor
## argparser 0.7.1 2021-03-08 [1] RSPM (R 4.2.0)
## assertthat 0.2.1 2019-03-21 [1] CRAN (R 4.2.0)
## backports 1.4.1 2021-12-13 [1] RSPM (R 4.2.0)
## base64url 1.4 2018-05-14 [1] RSPM (R 4.2.0)
## batchelor 1.12.3 2022-06-23 [1] Bioconductor
## beachmat 2.12.0 2022-04-26 [1] Bioconductor
## beeswarm 0.4.0 2021-06-01 [1] RSPM (R 4.2.0)
## Biobase * 2.56.0 2022-04-26 [1] Bioconductor
## BiocFileCache 2.4.0 2022-04-26 [1] Bioconductor
## BiocGenerics * 0.42.0 2022-04-26 [1] Bioconductor
## BiocIO 1.6.0 2022-04-26 [1] Bioconductor
## BiocManager 1.30.19 2022-10-25 [1] RSPM (R 4.2.0)
## BiocNeighbors 1.14.0 2022-04-26 [1] Bioconductor
## BiocParallel 1.30.4 2022-10-11 [1] Bioconductor
## BiocSingular 1.12.0 2022-04-26 [1] Bioconductor
## BiocVersion 3.15.2 2022-03-29 [1] Bioconductor
## biomaRt 2.52.0 2022-04-26 [1] Bioconductor
## Biostrings 2.64.1 2022-08-18 [1] Bioconductor
## bit 4.0.5 2022-11-15 [1] RSPM (R 4.2.0)
## bit64 4.0.5 2020-08-30 [1] CRAN (R 4.2.0)
## bitops 1.0-7 2021-04-24 [1] CRAN (R 4.2.0)
## blob 1.2.3 2022-04-10 [1] CRAN (R 4.2.0)
## bluster 1.6.0 2022-04-26 [1] Bioconductor
## brio 1.1.3 2021-11-30 [1] CRAN (R 4.2.0)
## bslib 0.4.1 2022-11-02 [1] RSPM (R 4.2.0)
## cachem 1.0.6 2021-08-19 [1] CRAN (R 4.2.0)
## callr 3.7.3 2022-11-02 [1] RSPM (R 4.2.0)
## celldex 1.6.0 2022-04-28 [1] Bioconductor
## class 7.3-20 2022-01-16 [2] CRAN (R 4.2.1)
## cli * 3.4.1 2022-09-23 [1] RSPM (R 4.2.0)
## cluster 2.1.3 2022-03-28 [2] CRAN (R 4.2.1)
## clustermq 0.8.8 2019-06-05 [1] RSPM (R 4.2.1)
## clustree 0.5.0 2022-06-25 [1] RSPM (R 4.2.0)
## codetools 0.2-18 2020-11-04 [2] CRAN (R 4.2.1)
## colorspace 2.0-3 2022-02-21 [1] CRAN (R 4.2.0)
## conflicted * 1.1.0 2021-11-26 [1] RSPM (R 4.2.0)
## cowplot 1.1.1 2020-12-30 [1] RSPM (R 4.2.0)
## crayon 1.5.2 2022-09-29 [1] RSPM (R 4.2.0)
## crosstalk 1.2.0 2021-11-04 [1] CRAN (R 4.2.0)
## curl 4.3.3 2022-10-06 [1] RSPM (R 4.2.0)
## data.table 1.14.6 2022-11-16 [1] RSPM (R 4.2.0)
## DBI 1.1.3 2022-06-18 [1] RSPM (R 4.2.0)
## dbplyr 2.2.1 2022-06-27 [1] RSPM (R 4.2.0)
## DelayedArray * 0.22.0 2022-04-26 [1] Bioconductor
## DelayedMatrixStats 1.18.2 2022-10-13 [1] Bioconductor
## deldir 1.0-6 2021-10-23 [1] RSPM (R 4.2.0)
## DEoptimR 1.0-11 2022-04-03 [1] CRAN (R 4.2.0)
## desc 1.4.2 2022-09-08 [1] RSPM (R 4.2.0)
## devtools 2.4.4 2022-07-20 [1] RSPM (R 4.2.0)
## digest 0.6.30 2022-10-18 [1] RSPM (R 4.2.0)
## downlit 0.4.2 2022-07-05 [1] RSPM (R 4.2.0)
## dplyr 1.0.10 2022-09-01 [1] RSPM (R 4.2.0)
## dqrng 0.3.0 2021-05-01 [1] RSPM (R 4.2.0)
## drake * 7.13.4 2022-08-19 [1] RSPM (R 4.2.0)
## DropletUtils 1.16.0 2022-04-26 [1] Bioconductor
## DT 0.26 2022-10-19 [1] RSPM (R 4.2.0)
## e1071 1.7-12 2022-10-24 [1] RSPM (R 4.2.0)
## edgeR 3.38.4 2022-08-07 [1] Bioconductor
## ellipsis 0.3.2 2021-04-29 [1] CRAN (R 4.2.0)
## ensembldb * 2.20.2 2022-06-16 [1] Bioconductor
## evaluate 0.18 2022-11-07 [1] RSPM (R 4.2.0)
## ExperimentHub 2.4.0 2022-04-26 [1] Bioconductor
## fansi 1.0.3 2022-03-24 [1] CRAN (R 4.2.0)
## farver 2.1.1 2022-07-06 [1] RSPM (R 4.2.0)
## fastmap 1.1.0 2021-01-25 [1] CRAN (R 4.2.0)
## filelock 1.0.2 2018-10-05 [1] CRAN (R 4.2.0)
## fitdistrplus 1.1-8 2022-03-10 [1] RSPM (R 4.2.0)
## fs 1.5.2 2021-12-08 [1] CRAN (R 4.2.0)
## future 1.29.0 2022-11-06 [1] RSPM (R 4.2.0)
## future.apply 1.10.0 2022-11-05 [1] RSPM (R 4.2.0)
## generics 0.1.3 2022-07-05 [1] RSPM (R 4.2.0)
## GenomeInfoDb * 1.32.4 2022-09-06 [1] Bioconductor
## GenomeInfoDbData 1.2.8 2022-05-02 [1] Bioconductor
## GenomicAlignments 1.32.1 2022-07-24 [1] Bioconductor
## GenomicFeatures * 1.48.4 2022-09-20 [1] Bioconductor
## GenomicRanges * 1.48.0 2022-04-26 [1] Bioconductor
## ggbeeswarm 0.6.0 2017-08-07 [1] RSPM (R 4.2.0)
## ggforce 0.4.1 2022-10-04 [1] RSPM (R 4.2.0)
## ggplot2 3.4.0 2022-11-04 [1] RSPM (R 4.2.0)
## ggplotify 0.1.0 2021-09-02 [1] RSPM (R 4.2.0)
## ggraph 2.1.0 2022-10-09 [1] RSPM (R 4.2.0)
## ggrepel 0.9.2 2022-11-06 [1] RSPM (R 4.2.0)
## ggridges 0.5.4 2022-09-26 [1] RSPM (R 4.2.0)
## glmGamPoi 1.8.0 2022-04-26 [1] Bioconductor
## globals 0.16.2 2022-11-21 [1] RSPM (R 4.2.0)
## glue 1.6.2 2022-02-24 [1] CRAN (R 4.2.0)
## goftest 1.2-3 2021-10-07 [1] RSPM (R 4.2.0)
## graphlayouts 0.8.4 2022-11-24 [1] RSPM (R 4.2.0)
## gridExtra 2.3 2017-09-09 [1] CRAN (R 4.2.0)
## gridGraphics 0.5-1 2020-12-13 [1] RSPM (R 4.2.0)
## gtable 0.3.1 2022-09-01 [1] RSPM (R 4.2.0)
## harmony 0.1.1 2022-11-14 [1] RSPM (R 4.2.0)
## HDF5Array * 1.24.2 2022-08-02 [1] Bioconductor
## here * 1.0.1 2020-12-13 [1] RSPM (R 4.2.0)
## highr 0.9 2021-04-16 [1] CRAN (R 4.2.0)
## hms 1.1.2 2022-08-19 [1] RSPM (R 4.2.0)
## htmltools 0.5.3 2022-07-18 [1] RSPM (R 4.2.0)
## htmlwidgets 1.5.4 2021-09-08 [1] CRAN (R 4.2.0)
## httpuv 1.6.6 2022-09-08 [1] RSPM (R 4.2.0)
## httr 1.4.4 2022-08-17 [1] RSPM (R 4.2.0)
## ica 1.0-3 2022-07-08 [1] RSPM (R 4.2.0)
## igraph 1.3.5 2022-09-22 [1] RSPM (R 4.2.0)
## interactiveDisplayBase 1.34.0 2022-04-26 [1] Bioconductor
## IRanges * 2.30.1 2022-08-18 [1] Bioconductor
## irlba 2.3.5.1 2022-10-03 [1] RSPM (R 4.2.0)
## janitor 2.1.0 2021-01-05 [1] RSPM (R 4.2.0)
## jquerylib 0.1.4 2021-04-26 [1] CRAN (R 4.2.0)
## jsonlite 1.8.4 2022-12-06 [1] RSPM (R 4.2.0)
## kableExtra 1.3.4 2021-02-20 [1] RSPM (R 4.2.0)
## KEGGREST 1.36.3 2022-07-12 [1] Bioconductor
## KernSmooth 2.23-20 2021-05-03 [2] CRAN (R 4.2.1)
## knitr 1.41 2022-11-18 [1] RSPM (R 4.2.0)
## labeling 0.4.2 2020-10-20 [1] CRAN (R 4.2.0)
## later 1.3.0 2021-08-18 [1] CRAN (R 4.2.0)
## lattice 0.20-45 2021-09-22 [2] CRAN (R 4.2.1)
## lazyeval 0.2.2 2019-03-15 [1] CRAN (R 4.2.0)
## leiden 0.4.3 2022-09-10 [1] RSPM (R 4.2.0)
## lifecycle 1.0.3 2022-10-07 [1] RSPM (R 4.2.0)
## limma 3.52.4 2022-09-27 [1] Bioconductor
## listenv 0.8.0 2019-12-05 [1] RSPM (R 4.2.0)
## littler 0.3.17 2023-05-26 [1] Github (eddelbuettel/littler@31aa160)
## lmtest 0.9-40 2022-03-21 [1] RSPM (R 4.2.0)
## locfit 1.5-9.6 2022-07-11 [1] RSPM (R 4.2.0)
## lubridate 1.9.0 2022-11-06 [1] RSPM (R 4.2.0)
## magrittr * 2.0.3 2022-03-30 [1] CRAN (R 4.2.0)
## MASS 7.3-58.1 2022-08-03 [2] RSPM (R 4.2.0)
## Matrix * 1.5-3 2022-11-11 [1] RSPM (R 4.2.0)
## MatrixGenerics * 1.8.1 2022-06-26 [1] Bioconductor
## matrixStats * 0.63.0 2022-11-18 [1] RSPM (R 4.2.0)
## memoise 2.0.1 2021-11-26 [1] CRAN (R 4.2.0)
## metapod 1.4.0 2022-04-26 [1] Bioconductor
## mime 0.12 2021-09-28 [1] CRAN (R 4.2.0)
## miniUI 0.1.1.1 2018-05-18 [1] RSPM (R 4.2.0)
## munsell 0.5.0 2018-06-12 [1] CRAN (R 4.2.0)
## mvtnorm 1.1-3 2021-10-08 [1] CRAN (R 4.2.0)
## nlme 3.1-158 2022-06-15 [2] RSPM (R 4.2.0)
## org.Hs.eg.db 3.15.0 2022-04-11 [1] Bioconductor
## parallelly 1.32.1 2022-07-21 [1] RSPM (R 4.2.0)
## patchwork 1.1.2 2022-08-19 [1] RSPM (R 4.2.0)
## pbapply 1.6-0 2022-11-16 [1] RSPM (R 4.2.0)
## pcaPP 2.0-3 2022-10-24 [1] RSPM (R 4.2.0)
## PCAtools 2.8.0 2022-04-26 [1] Bioconductor
## pheatmap 1.0.12 2019-01-04 [1] RSPM (R 4.2.0)
## pillar 1.8.1 2022-08-19 [1] RSPM (R 4.2.0)
## pkgbuild 1.3.1 2021-12-20 [1] RSPM (R 4.2.0)
## pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.2.0)
## pkgload 1.3.2 2022-11-16 [1] RSPM (R 4.2.0)
## plotly 4.10.1 2022-11-07 [1] RSPM (R 4.2.0)
## plyr 1.8.8 2022-11-11 [1] RSPM (R 4.2.0)
## png 0.1-8 2022-11-29 [1] RSPM (R 4.2.0)
## polyclip 1.10-4 2022-10-20 [1] RSPM (R 4.2.0)
## prettyunits 1.1.1 2020-01-24 [1] CRAN (R 4.2.0)
## processx 3.8.0 2022-10-26 [1] RSPM (R 4.2.0)
## profvis 0.3.7 2020-11-02 [1] RSPM (R 4.2.0)
## progress 1.2.2 2019-05-16 [1] CRAN (R 4.2.0)
## progressr 0.11.0 2022-09-02 [1] RSPM (R 4.2.0)
## promises 1.2.0.1 2021-02-11 [1] CRAN (R 4.2.0)
## ProtGenerics 1.28.0 2022-04-26 [1] Bioconductor
## proxy 0.4-27 2022-06-09 [1] RSPM (R 4.2.0)
## ps 1.7.2 2022-10-26 [1] RSPM (R 4.2.0)
## purrr 0.3.5 2022-10-06 [1] RSPM (R 4.2.0)
## qs 0.25.4 2022-08-09 [1] RSPM (R 4.2.0)
## R.methodsS3 1.8.2 2022-06-13 [1] RSPM (R 4.2.0)
## R.oo 1.25.0 2022-06-12 [1] RSPM (R 4.2.0)
## R.utils 2.12.2 2022-11-11 [1] RSPM (R 4.2.0)
## R6 2.5.1 2021-08-19 [1] CRAN (R 4.2.0)
## ragg 1.2.4 2022-10-24 [1] RSPM (R 4.2.0)
## RANN 2.6.1 2019-01-08 [1] RSPM (R 4.2.0)
## RApiSerialize 0.1.2 2022-08-25 [1] RSPM (R 4.2.0)
## rappdirs 0.3.3 2021-01-31 [1] CRAN (R 4.2.0)
## RColorBrewer 1.1-3 2022-04-03 [1] CRAN (R 4.2.0)
## Rcpp 1.0.9 2022-07-08 [1] RSPM (R 4.2.0)
## RcppAnnoy 0.0.20 2022-10-27 [1] RSPM (R 4.2.0)
## RcppParallel 5.1.5 2022-01-05 [1] RSPM (R 4.2.0)
## RCurl 1.98-1.9 2022-10-03 [1] RSPM (R 4.2.0)
## readr 2.1.3 2022-10-01 [1] RSPM (R 4.2.0)
## remotes 2.4.2 2021-11-30 [1] RSPM (R 4.2.0)
## reshape2 1.4.4 2020-04-09 [1] CRAN (R 4.2.0)
## ResidualMatrix 1.6.1 2022-08-16 [1] Bioconductor
## restfulr 0.0.15 2022-06-16 [1] RSPM (R 4.2.0)
## reticulate 1.26 2022-08-31 [1] RSPM (R 4.2.0)
## rhdf5 * 2.40.0 2022-04-26 [1] Bioconductor
## rhdf5filters 1.8.0 2022-04-26 [1] Bioconductor
## Rhdf5lib 1.18.2 2022-05-15 [1] Bioconductor
## RhpcBLASctl 0.21-247.1 2021-11-05 [1] RSPM (R 4.2.0)
## rjson 0.2.21 2022-01-09 [1] CRAN (R 4.2.0)
## rlang * 1.0.6 2022-09-24 [1] RSPM (R 4.2.0)
## rmarkdown 2.18 2022-11-09 [1] RSPM (R 4.2.0)
## robustbase 0.95-0 2022-04-02 [1] CRAN (R 4.2.0)
## ROCR 1.0-11 2020-05-02 [1] CRAN (R 4.2.0)
## rprojroot 2.0.3 2022-04-02 [1] CRAN (R 4.2.0)
## rrcov 1.7-2 2022-10-24 [1] RSPM (R 4.2.0)
## Rsamtools 2.12.0 2022-04-26 [1] Bioconductor
## RSQLite 2.2.19 2022-11-24 [1] RSPM (R 4.2.0)
## rstudioapi 0.14 2022-08-22 [1] RSPM (R 4.2.0)
## rsvd 1.0.5 2021-04-16 [1] RSPM (R 4.2.0)
## rtracklayer 1.56.1 2022-06-23 [1] Bioconductor
## Rtsne 0.16 2022-04-17 [1] RSPM (R 4.2.0)
## rvest 1.0.3 2022-08-19 [1] RSPM (R 4.2.0)
## rzmq 0.9.8 2021-05-04 [1] RSPM (R 4.2.0)
## S4Vectors * 0.34.0 2022-04-26 [1] Bioconductor
## sass 0.4.4 2022-11-24 [1] RSPM (R 4.2.0)
## SC3 1.15.1 2023-05-26 [1] Github (gorgitko/SC3@58d73fb)
## ScaledMatrix 1.4.1 2022-09-11 [1] Bioconductor
## scales 1.2.1 2022-08-20 [1] RSPM (R 4.2.0)
## scater 1.24.0 2022-04-26 [1] Bioconductor
## scattermore 0.8 2022-02-14 [1] RSPM (R 4.2.0)
## scDblFinder 1.10.0 2022-04-26 [1] Bioconductor
## VP scdrake * 1.5.1 2023-06-15 [?] Bioconductor (on disk 1.5.0)
## scran 1.24.1 2022-09-11 [1] Bioconductor
## sctransform 0.3.5 2022-09-21 [1] RSPM (R 4.2.0)
## scuttle 1.6.3 2022-08-23 [1] Bioconductor
## sessioninfo 1.2.2 2021-12-06 [1] RSPM (R 4.2.0)
## Seurat 4.3.0 2022-11-18 [1] RSPM (R 4.2.0)
## SeuratObject 4.1.3 2022-11-07 [1] RSPM (R 4.2.0)
## shiny 1.7.3 2022-10-25 [1] RSPM (R 4.2.0)
## SingleCellExperiment 1.18.1 2022-10-02 [1] Bioconductor
## SingleR 1.10.0 2022-04-26 [1] Bioconductor
## snakecase 0.11.0 2019-05-25 [1] RSPM (R 4.2.0)
## sp 1.5-1 2022-11-07 [1] RSPM (R 4.2.0)
## sparseMatrixStats 1.8.0 2022-04-26 [1] Bioconductor
## spatstat.data 3.0-0 2022-10-21 [1] RSPM (R 4.2.0)
## spatstat.explore 3.0-5 2022-11-10 [1] RSPM (R 4.2.0)
## spatstat.geom 3.0-3 2022-10-25 [1] RSPM (R 4.2.0)
## spatstat.random 3.0-1 2022-11-03 [1] RSPM (R 4.2.0)
## spatstat.sparse 3.0-0 2022-10-21 [1] RSPM (R 4.2.0)
## spatstat.utils 3.0-1 2022-10-19 [1] RSPM (R 4.2.0)
## statmod 1.4.37 2022-08-12 [1] RSPM (R 4.2.0)
## storr 1.2.5 2020-12-01 [1] RSPM (R 4.2.0)
## stringfish 0.15.7 2022-04-13 [1] RSPM (R 4.2.0)
## stringi 1.7.8 2022-07-11 [1] RSPM (R 4.2.0)
## stringr 1.5.0 2022-12-02 [1] RSPM (R 4.2.0)
## SummarizedExperiment 1.26.1 2022-04-29 [1] Bioconductor
## survival 3.3-1 2022-03-03 [2] CRAN (R 4.2.1)
## svglite 2.1.0 2022-02-03 [1] RSPM (R 4.2.0)
## systemfonts 1.0.4 2022-02-11 [1] RSPM (R 4.2.0)
## tensor 1.5 2012-05-05 [1] RSPM (R 4.2.0)
## testthat * 3.1.5 2022-10-08 [1] RSPM (R 4.2.0)
## textshaping 0.3.6 2021-10-13 [1] RSPM (R 4.2.0)
## tibble 3.1.8 2022-07-22 [1] RSPM (R 4.2.0)
## tidygraph 1.2.3 2023-02-01 [1] RSPM (R 4.2.0)
## tidyr 1.2.1 2022-09-08 [1] RSPM (R 4.2.0)
## tidyselect 1.1.2 2022-02-21 [1] RSPM (R 4.2.0)
## timechange 0.1.1 2022-11-04 [1] RSPM (R 4.2.0)
## tweenr 2.0.2 2022-09-06 [1] RSPM (R 4.2.0)
## txtq 0.2.4 2021-03-27 [1] RSPM (R 4.2.0)
## tzdb 0.3.0 2022-03-28 [1] CRAN (R 4.2.0)
## urlchecker 1.0.1 2021-11-30 [1] RSPM (R 4.2.0)
## usethis 2.1.6 2022-05-25 [1] RSPM (R 4.2.0)
## utf8 1.2.2 2021-07-24 [1] CRAN (R 4.2.0)
## uwot 0.1.14 2022-08-22 [1] RSPM (R 4.2.0)
## vctrs 0.5.1 2022-11-16 [1] RSPM (R 4.2.0)
## vipor 0.4.5 2017-03-22 [1] RSPM (R 4.2.0)
## viridis 0.6.2 2021-10-13 [1] CRAN (R 4.2.0)
## viridisLite 0.4.1 2022-08-22 [1] RSPM (R 4.2.0)
## webshot 0.5.4 2022-09-26 [1] RSPM (R 4.2.0)
## withr 2.5.0 2022-03-03 [1] CRAN (R 4.2.0)
## WriteXLS 6.4.0 2022-02-24 [1] RSPM (R 4.2.0)
## xfun 0.35 2022-11-16 [1] RSPM (R 4.2.0)
## xgboost 1.6.0.1 2022-04-16 [1] RSPM (R 4.2.0)
## XML 3.99-0.13 2022-12-04 [1] RSPM (R 4.2.0)
## xml2 1.3.3 2021-11-30 [1] CRAN (R 4.2.0)
## xtable 1.8-4 2019-04-21 [1] CRAN (R 4.2.0)
## XVector 0.36.0 2022-04-26 [1] Bioconductor
## yaml 2.3.6 2022-10-18 [1] RSPM (R 4.2.0)
## yulab.utils 0.0.5 2022-06-30 [1] RSPM (R 4.2.0)
## zlibbioc 1.42.0 2022-04-26 [1] Bioconductor
## zoo 1.8-11 2022-09-17 [1] RSPM (R 4.2.0)
##
## [1] /usr/local/lib/R/site-library
## [2] /usr/local/lib/R/library
##
## V ── Loaded and on-disk version mismatch.
## P ── Loaded and on-disk path mismatch.
##
## ──────────────────────────────────────────────────────────────────────────────
## R version 4.2.1 (2022-06-23)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.4 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/liblapack.so.3
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats graphics stats4 utils methods base
##
## other attached packages:
## [1] ensembldb_2.20.2 AnnotationFilter_1.20.0 GenomicFeatures_1.48.4
## [4] GenomicRanges_1.48.0 GenomeInfoDb_1.32.4 HDF5Array_1.24.2
## [7] rhdf5_2.40.0 DelayedArray_0.22.0 MatrixGenerics_1.8.1
## [10] matrixStats_0.63.0 Matrix_1.5-3 drake_7.13.4
## [13] AnnotationDbi_1.58.0 IRanges_2.30.1 S4Vectors_0.34.0
## [16] Biobase_2.56.0 BiocGenerics_0.42.0 scdrake_1.5.1
## [19] testthat_3.1.5 magrittr_2.0.3 here_1.0.1
## [22] cli_3.4.1 rlang_1.0.6 conflicted_1.1.0
##
## loaded via a namespace (and not attached):
## [1] rsvd_1.0.5 ica_1.0-3
## [3] svglite_2.1.0 class_7.3-20
## [5] ps_1.7.2 Rsamtools_2.12.0
## [7] lmtest_0.9-40 rprojroot_2.0.3
## [9] crayon_1.5.2 MASS_7.3-58.1
## [11] rhdf5filters_1.8.0 nlme_3.1-158
## [13] WriteXLS_6.4.0 backports_1.4.1
## [15] XVector_0.36.0 ROCR_1.0-11
## [17] irlba_2.3.5.1 callr_3.7.3
## [19] limma_3.52.4 scater_1.24.0
## [21] filelock_1.0.2 stringfish_0.15.7
## [23] xgboost_1.6.0.1 qs_0.25.4
## [25] BiocParallel_1.30.4 rjson_0.2.21
## [27] bit64_4.0.5 glue_1.6.2
## [29] harmony_0.1.1 scDblFinder_1.10.0
## [31] pheatmap_1.0.12 sctransform_0.3.5
## [33] parallel_4.2.1 processx_3.8.0
## [35] vipor_0.4.5 spatstat.sparse_3.0-0
## [37] base64url_1.4 spatstat.geom_3.0-3
## [39] tidyselect_1.1.2 SummarizedExperiment_1.26.1
## [41] usethis_2.1.6 argparser_0.7.1
## [43] SeuratObject_4.1.3 fitdistrplus_1.1-8
## [45] XML_3.99-0.13 tidyr_1.2.1
## [47] zoo_1.8-11 GenomicAlignments_1.32.1
## [49] xtable_1.8-4 evaluate_0.18
## [51] ggplot2_3.4.0 scuttle_1.6.3
## [53] zlibbioc_1.42.0 rstudioapi_0.14
## [55] miniUI_0.1.1.1 sp_1.5-1
## [57] bslib_0.4.1 shiny_1.7.3
## [59] BiocSingular_1.12.0 xfun_0.35
## [61] pkgbuild_1.3.1 cluster_2.1.3
## [63] tidygraph_1.2.3 KEGGREST_1.36.3
## [65] clustermq_0.8.8 tibble_3.1.8
## [67] interactiveDisplayBase_1.34.0 ggrepel_0.9.2
## [69] listenv_0.8.0 Biostrings_2.64.1
## [71] png_0.1-8 future_1.29.0
## [73] withr_2.5.0 bitops_1.0-7
## [75] ggforce_0.4.1 plyr_1.8.8
## [77] pcaPP_2.0-3 e1071_1.7-12
## [79] dqrng_0.3.0 RcppParallel_5.1.5
## [81] pillar_1.8.1 cachem_1.0.6
## [83] fs_1.5.2 DelayedMatrixStats_1.18.2
## [85] vctrs_0.5.1 ellipsis_0.3.2
## [87] generics_0.1.3 RApiSerialize_0.1.2
## [89] devtools_2.4.4 tools_4.2.1
## [91] beeswarm_0.4.0 munsell_0.5.0
## [93] tweenr_2.0.2 proxy_0.4-27
## [95] fastmap_1.1.0 compiler_4.2.1
## [97] pkgload_1.3.2 abind_1.4-5
## [99] httpuv_1.6.6 rtracklayer_1.56.1
## [101] ExperimentHub_2.4.0 sessioninfo_1.2.2
## [103] plotly_4.10.1 GenomeInfoDbData_1.2.8
## [105] gridExtra_2.3 edgeR_3.38.4
## [107] lattice_0.20-45 deldir_1.0-6
## [109] utf8_1.2.2 later_1.3.0
## [111] dplyr_1.0.10 BiocFileCache_2.4.0
## [113] jsonlite_1.8.4 storr_1.2.5
## [115] scales_1.2.1 datasets_4.2.1
## [117] ScaledMatrix_1.4.1 pbapply_1.6-0
## [119] sparseMatrixStats_1.8.0 lazyeval_0.2.2
## [121] promises_1.2.0.1 R.utils_2.12.2
## [123] goftest_1.2-3 spatstat.utils_3.0-1
## [125] reticulate_1.26 rmarkdown_2.18
## [127] cowplot_1.1.1 textshaping_0.3.6
## [129] statmod_1.4.37 webshot_0.5.4
## [131] Rtsne_0.16 glmGamPoi_1.8.0
## [133] uwot_0.1.14 igraph_1.3.5
## [135] survival_3.3-1 ResidualMatrix_1.6.1
## [137] yaml_2.3.6 systemfonts_1.0.4
## [139] htmltools_0.5.3 memoise_2.0.1
## [141] profvis_0.3.7 BiocIO_1.6.0
## [143] Seurat_4.3.0 locfit_1.5-9.6
## [145] graphlayouts_0.8.4 PCAtools_2.8.0
## [147] viridisLite_0.4.1 digest_0.6.30
## [149] rrcov_1.7-2 assertthat_0.2.1
## [151] RhpcBLASctl_0.21-247.1 mime_0.12
## [153] rappdirs_0.3.3 SingleR_1.10.0
## [155] RSQLite_2.2.19 yulab.utils_0.0.5
## [157] future.apply_1.10.0 remotes_2.4.2
## [159] data.table_1.14.6 urlchecker_1.0.1
## [161] blob_1.2.3 R.oo_1.25.0
## [163] ragg_1.2.4 labeling_0.4.2
## [165] splines_4.2.1 Rhdf5lib_1.18.2
## [167] AnnotationHub_3.4.0 ProtGenerics_1.28.0
## [169] RCurl_1.98-1.9 hms_1.1.2
## [171] colorspace_2.0-3 DropletUtils_1.16.0
## [173] BiocManager_1.30.19 ggbeeswarm_0.6.0
## [175] littler_0.3.17 sass_0.4.4
## [177] Rcpp_1.0.9 RANN_2.6.1
## [179] mvtnorm_1.1-3 txtq_0.2.4
## [181] fansi_1.0.3 tzdb_0.3.0
## [183] brio_1.1.3 parallelly_1.32.1
## [185] R6_2.5.1 grid_4.2.1
## [187] ggridges_0.5.4 lifecycle_1.0.3
## [189] bluster_1.6.0 curl_4.3.3
## [191] jquerylib_0.1.4 leiden_0.4.3
## [193] snakecase_0.11.0 robustbase_0.95-0
## [195] desc_1.4.2 RcppAnnoy_0.0.20
## [197] org.Hs.eg.db_3.15.0 RColorBrewer_1.1-3
## [199] spatstat.explore_3.0-5 stringr_1.5.0
## [201] htmlwidgets_1.5.4 beachmat_2.12.0
## [203] polyclip_1.10-4 biomaRt_2.52.0
## [205] purrr_0.3.5 crosstalk_1.2.0
## [207] timechange_0.1.1 gridGraphics_0.5-1
## [209] rvest_1.0.3 globals_0.16.2
## [211] spatstat.random_3.0-1 patchwork_1.1.2
## [213] progressr_0.11.0 batchelor_1.12.3
## [215] codetools_0.2-18 grDevices_4.2.1
## [217] lubridate_1.9.0 metapod_1.4.0
## [219] prettyunits_1.1.1 SingleCellExperiment_1.18.1
## [221] dbplyr_2.2.1 R.methodsS3_1.8.2
## [223] celldex_1.6.0 gtable_0.3.1
## [225] DBI_1.1.3 highr_0.9
## [227] tensor_1.5 httr_1.4.4
## [229] KernSmooth_2.23-20 stringi_1.7.8
## [231] progress_1.2.2 reshape2_1.4.4
## [233] farver_2.1.1 viridis_0.6.2
## [235] DT_0.26 xml2_1.3.3
## [237] BiocNeighbors_1.14.0 kableExtra_1.3.4
## [239] restfulr_0.0.15 readr_2.1.3
## [241] ggplotify_0.1.0 scattermore_0.8
## [243] BiocVersion_3.15.2 scran_1.24.1
## [245] DEoptimR_1.0-11 bit_4.0.5
## [247] clustree_0.5.0 spatstat.data_3.0-0
## [249] ggraph_2.1.0 janitor_2.1.0
## [251] pkgconfig_2.0.3 rzmq_0.9.8
## [253] knitr_1.41 downlit_0.4.2
## [255] SC3_1.15.1
Page generated on 2023-12-02 18:51:26